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CONSISTENT NONPARAMETRIC ESTIMATION
FOR HEAVY-TAILED SPARSE GRAPHS
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We study graphons as a nonparametric generalization of stochas-
tic block models, and show how to obtain compactly represented esti-
mators for sparse networks in this framework. In contrast to previous
work, we relax the usual boundedness assumption for the generating
graphon and instead assume only integrability, so that we can han-
dle networks that have long tails in their degree distributions. We
also relax the usual assumption that the graphon is defined on the
unit interval, to allow latent position graphs based on more general
spaces.

We analyze three algorithms. The first is a least squares algorithm,
which gives a consistent estimator for all square-integrable graphons,
with errors expressed in terms of the best possible stochastic block
model approximation. Next, we analyze an algorithm based on the cut
norm, which works for all integrable graphons. Finally, we show that
clustering based on degrees works whenever the underlying degree
distribution is atomless.
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1. Introduction. Motivated by real-world technological, social, and bi-
ological networks, the study of large networks has become increasingly im-
portant. Much work in the statistics and machine learning communities has

*Supported by an internship at Microsoft Research New England.
MSC 2010 subject classifications: Primary 62G20; secondary 62H30, 05C80
Keywords and phrases: sparse networks, estimation, graphons

1

http://www.imstat.org/aos/


2 BORGS, CHAYES, COHN, AND GANGULY

focused on the questions of modeling and estimation for these networks. In
this paper, we analyze three algorithms for estimating the structure of a
sparse network. Our results apply to a substantially larger class of network
models than those analyzed in previous papers. Specifically, our techniques
handle networks with heavy-tailed degree distributions.

1.1. Stochastic block models and W -random graphs. Many previous pa-
pers have described large networks in terms of parametric models, one of
the most popular being the stochastic block model, introduced in [41]. These
models can be characterized by a vector of probabilities p = (pi) on a fi-
nite set of communities and a matrix B = (βij) of “affinities.” Given these
parameters, one then generates a graph on n labeled nodes by assigning a
community to each vertex, independently at random according to the proba-
bility distribution p, and then connecting vertices belonging to communities
i and j with probability βij . Such a model is often considered a reasonable
approximation of a social network characterized by a limited number of
communities.

More recently, motivated by extremely large networks, researchers have
begun to consider nonparametric stochastic block models, for which there is
a continuous family of communities, i.e., for which the k× k matrix of edge
probabilities is replaced by a two-dimensional function. The nonparametric
models we study in this paper are usually referred to as W -random graphs
or latent position graphs. In the most general setup, such a model is defined
in terms of a probability space (Ω,F , π) (the space of latent positions or fea-
tures) and a graphon W over (Ω,F , π), defined as an integrable, nonnegative
function on Ω×Ω that is symmetric in the sense that W (x, y) = W (y, x) for
all x, y ∈ Ω. To generate a graph on n nodes, one then chooses n “positions”
x1, . . . , xn i.i.d. at random from (Ω,F , π) and, conditioned on these, chooses
edges independently, with the probability of an edge between vertices i and
j given by W (xi, xj). The resulting graph is called a W -random graph.

As originally proposed in [40], the space of latent positions Ω comes
equipped with a metric and the probability of connection is a function of dis-
tance, but the more general setting we have described is commonly studied.
Note that in the dense setting, this model is quite natural, since it can be
shown [42, 6, 32] that if a random graph G is the restriction of (an ergodic
component of) an infinite, exchangeable random graph, then G must be an
instance of a W -random graph for some function W with values in [0, 1]. Due
to this connection, W -random graph models are often called exchangeable
graph models.
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1.2. Dense and sparse graphs. To model sparse graphs in this nonpara-
metric setup, one uses connection probabilities that are given by a symmetric
function W times a target density ρ, leading to the model of “inhomogeneous
random graphs” defined in [11], with nodes i and j now being connected with
probability min{1, ρW (xi, xj)}. The resulting graph is called a W -random
graph with target density ρ and will be denoted by Gn(ρW ).

For both dense and sparse graphs, this kind of model is related to the
theory of convergent graph sequences [17, 18, 12, 19, 15, 14]. In the setting
of dense graph limits, W -random graphs were first explicitly proposed in
[51], although they can be implicitly traced back to the much earlier work
of [42] and [6] mentioned above. The term “graphon” originated in [18].

While for dense graphs one only needs to consider bounded graphons,
this boundedness assumption is not very natural for sparse graphs. Indeed,
suppose W is a bounded graphon, and let n tend to infinity with ρ = ρn
chosen so that ρnn → ∞ as well. Then one can check that the nonzero
degrees in Gn(ρnW ) are of the same order of magnitude, in the sense that
for each ε > 0, there exists a constant c > 0 such that with probability
1 − o(1), at least a 1 − ε fraction of the nonzero degrees in Gn(ρnW ) are
within a factor of c of ρnn. This behavior is natural for dense graphs, but it
is a serious restriction for sparse graphs. Instead, many real-world networks
have long-tailed degree distributions. For applications, one would therefore
want to consider unbounded graphons W .

1.3. Estimation and previous literature. How can we estimate a graphon
W given a sample G of a W -random graph? This problem encapsulates the
idea of inferring the underlying structure in a random network.

For the special case where W is a stochastic block model, the estimation
problem is closely related to the problem of graph partitioning and has been
intensely studied in the literature [62, 41, 34], using methods that range from
maximum likelihood estimates [61] and Gibbs sampling [58] or simulated
annealing [43] to spectral clustering [13, 53, 31, 30, 25] and tensor algebra [8].
Proving consistency of these methods is often not hard in the dense regime,
but it becomes more difficult for sparse graphs. See, for example, [48, 49]
for a proof of consistency for spectral clustering when the average degree
is as small as log n, and [2, 3] for an effective algorithm that is provably
consistent as long as the average degree diverges.

Estimating graphons that are not block models is more challenging. This
problem is implicit in [44], but the first explicit discussion of the nonpara-
metric problem we are aware of was given in [9], even though the actual
consistency proof there is still limited to stochastic block models with a
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fixed number of blocks. The restriction to a fixed number of blocks was re-
laxed in [56] and [29]. The full nonparametric model was studied in [10],
under the assumption that none of the eigenfunctions of the operator asso-
ciated with the kernel W is orthogonal to the constant function 1 and the
eigenvalues are distinct.

Many further papers have been written on graphon estimation, including
[56, 26, 50, 5, 7, 35, 46, 52, 55, 59, 63, 1, 21, 22, 28, 64, 37, 38, 54, 60,
65, 66, 23, 27, 39, 20, 45]. Each paper makes different assumptions about
the density and the underlying graphon. Strong results are known for dense
graphs: [23] shows how to approximate arbitrary measurable graphons W
with values in [0, 1] given a dense W -random graph, and [37] attains an
optimal rate for least squares estimators of both stochastic block models
and Hölder-continuous graphons from a dense graph. For sparse graphs, [63]
proves convergence of a maximum likelihood estimator under the assumption
that W is bounded, bounded away from zero, and Hölder-continuous. Most
recently, [20] introduces a modified version of the least squares algorithm
that optimizes over block models with bounded L∞ norm; this algorithm
achieves consistency for arbitrary bounded graphons and arbitrary densities,
as long as the average degree diverges with the number of vertices. The
same paper also gives a differentially private version of the least squares
algorithm which works again for arbitrary bounded graphons, now requiring
that the average degree must grow at least like the logarithm of the number
of vertices. Independently, [45] proposes and analyzes the modified (non-
private) algorithm and proves matching upper and lower bounds for the
rates achieved by this algorithm.

But more important than some of the technical assumptions used by
previous authors is the fact that all the previous results we are aware of
require W to be bounded. As pointed out above, this assumption, while
natural for dense graphs, rules out most degree distributions observed in
real-world networks. Our goal here is to remove this assumption.

1.4. Identifiability. Before summarizing our contributions, we need to
discuss the fact that in general, W cannot be uniquely determined from the
observation of even the full sequence (Gn)n≥1, a problem called the identifia-
bility issue in the literature; see, for example, [9, 22]. To discuss this, consider
two probability spaces (Ω,F , π) and (Ω′,F ′, π′), a measure-preserving map
φ : Ω′ → Ω, and a graphon W over (Ω,F , π). Define the pullback of W to
(Ω′,F ′, π′) to be the graphon W φ defined by W φ(x, y) = W (φ(x), φ(y)).
Then the sequences of random graphs generated from two graphons W and
W ′ have the same distribution if W ′ = W φ. While it was stated in some
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of the early literature on graphon estimation that the converse is true as
well, that turns out to be false; see, for example, Example A.3 below for a
counterexample. To formulate the correct statement, we define W and W ′

to be equivalent if there exists a third graphon U over a probability space
(Ω′′,F ′′, π′′) and two measure-preserving maps φ : Ω→ Ω′′ and φ′ : Ω′ → Ω′′

such that W = Uφ and W ′ = Uφ
′

almost everywhere. With this defini-
tion, we are now ready to characterize the full extent to which W is not
identifiable:

Theorem 1.1. Let W and W ′ be graphons over the probability spaces
(Ω,F , π) and (Ω′,F ′, π′), respectively, and assume that nρn →∞ and ρn →
0. Then the random graphs Gn(ρnW ) and Gn(ρnW

′) are identically dis-
tributed for all n if and only if W and W ′ are equivalent.

The analogue of this theorem for the dense case (where ρn = 1 and W
and W ′ take values in [0, 1]) follows from the results of [16] by a simple
argument involving subgraph counts or the results of [32] if we assume that
both graphons are defined over [0, 1]. But for the sparse case and general
integrable (rather than bounded) graphons this is a new result; see Re-
mark 3.11(i) in Section 3.5 for the proof. In view of Theorem 1.1, both the
feature space (Ω,F , π) and the graphon W are unobservable in general, and
even if we fix the feature space there is no “canonical graphon” an estimation
procedure can output. In light of these facts, the natural way of dealing with
the identification problem is to admit that there is nothing canonical about
any particular representative W , and to define consistency as consistency
with respect to a metric between equivalence classes, rather than between
graphons themselves.

1.5. Goals. In this paper, we follow the spirit of [63] and define consis-
tency with respect to a metric on equivalence classes of graphons, but in
contrast to [63], we allow for more general spaces than just the uniform dis-
tribution over the unit interval since more general feature spaces are more
natural from an application point of view (see Remark 3.7 below). To de-
fine our notion of distance, we recall that a coupling between probability
measures π and π′ is a measure ν on the product space such that the projec-
tions of ν to the two coordinates are equal to π and π′, respectively. Given
p ≥ 1 and two Lp graphons W over (Ω,F , π) and W ′ over (Ω′, π′) (i.e.,
graphons such that

∫
Ω |W |

p dπ <∞ and
∫

Ω′ |W
′|p dπ′ <∞), we then define

the distance δp(W,W
′) by

(1.1) δp(W,W
′) = inf

ν

(∫ ∣∣∣W (x, y)−W ′(x′, y′)
∣∣∣p dν(x, x′) dν(y, y′)

)1/p

,
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where the infimum is over all couplings ν of π and π′. Note that this distance
is a version of the Wasserstein p-distance.

Having defined a metric on equivalence classes of graphons, we can now
formulate the estimation problem considered in this paper: Given a single
instance of a W -random graph defined on an unobserved probability space
(Ω,F , π), find an algorithm that (a) outputs an estimator Ŵ such that

Ŵ has a concise representation whose size grows only slowly with n; (b)
estimates W consistently assuming just integrability conditions; (c) works
for arbitrary target densities, as long as the graph is not too sparse (say has
divergent average degree); and (d) runs in polynomial time.

While efficiency (property (d)) is clearly important for practical appli-
cations, our main focus in this paper will be the fundamental problem of
consistent estimation under as few restrictions on W as possible, i.e., algo-
rithms achieving properties (a)–(c). Indeed, none of the three algorithms we
study in this paper achieves all four properties. Two of them achieve (a)–
(c), and hence solve the desired problem of consistent estimation, but do
not run in polynomial time. The third achieves (a), (c), and (d), and hence
is efficient, but requires an additional condition to ensure consistency.

Focusing on approximation under a given metric is a useful abstraction,
but it can obscure one issue: in practice it is generally not enough just to
know that δp(W, Ŵ ) is small. In addition, we would like to find an explicit

coupling ν between W and Ŵ in (1.1), not necessarily achieving the exact

infimum but at least providing a good bound for δp(W, Ŵ ). In principle
one could imagine algorithms without this property, but the estimators we
analyze in this paper all produce explicit couplings.

1.6. Organization. The rest of the paper is organized as follows. In Sec-
tions 2 and 3, we state our main results and place them in the context of
the theory of graphons. Sections 4 through 6 outline the proofs of our main
theorems. We conclude the body of the paper with Section 7, which exam-
ines how our bounds behave given a greater degree of regularity than we
assume elsewhere in the paper (namely, Hölder continuity). A more detailed
treatment of our theory is given in the appendices, which can be found
in the supplementary material. Appendices A through C provide a thor-
ough account of measure-theoretic technicalities and various estimates for
graphons and degree distributions. Appendices D and E fill in the details of
the proofs of our main theorems. Appendix F proves bounds for the special
case of Hölder-continuous graphons. Appendix G analyzes several examples
of network models with power-law degree distributions, and shows exactly
how our theorems apply. Finally, Appendix H derives some concentration
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bounds we use in our proofs.

2. Summary of results. In this paper, our estimator Ŵ will be given
in terms of a block model, with a number of blocks that grows slowly with
the number of vertices of the input graph. Given this framework, it is natural
to compare the performance of our algorithm to that of the best possible
block model in a suitable class. Here we consider the class B≥κ = {(p, B) :
mini pi ≥ κ} of all block models with minimal block size at least κ. For an
approximation outputting a block model in B≥κ, the best error we could
achieve is

(2.1) ε
(p)
≥κ(W ) = inf

W ′∈B≥κ
δp(W,W

′).

We often refer to this benchmark as an oracle error, since it is the best an
oracle with access to the unknown W could do. Our goal is to prove oracle
inequalities that bound the estimation error in terms of the oracle error, as
well as a few additional terms that account for variance and the visibility of
heavy tails at finite scale.

When establishing the estimation error for W , we first prove a bound on
the estimation error for the intermediate matrix Qn = Qn(ρW ) with entries

(2.2) (Qn)ij = min{1, ρW (xi, xj)} if i 6= j

and (Qn)ii = 0. The estimation error for Qn will be expressed in terms of
an oracle error for Qn plus a concentration error stemming from the fact
that, even after conditioning on Qn, the observed graph Gn is random; see
Theorems 4.1 and 5.1 below. In a second step, we then prove consistency
for the original estimation error, given bounds that estimate the difference
between Ŵ and W . Note that part of the literature stops at the first step,
effectively avoiding the identifiability issue discussed above.

In this paper, we consider three algorithms for producing a block model
approximation to W from a single instance of a W -random graph G: two
inefficient ones and one whose running time is polynomial in n.

1. The well-known least squares algorithm, which has been analyzed un-
der various additional assumptions on W , until recently [20, 45] not
even covering arbitrary bounded graphons. Here we will prove consis-
tency of this algorithm in the metric δ2 for arbitrary L2 graphons.

2. A least cut norm algorithm, which we prove to be consistent under the
cut norm for arbitrary L1 graphons. The cut norm is defined below.

3. A degree sorting algorithm, which we show is consistent whenever the
degree distribution of W is atomless. (Graphons with this property
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are equivalent to graphons over [0, 1] such that Wx :=
∫ 1

0 W (x, y) dy
is strictly monotone in x.) This algorithm runs in polynomial time.

To state our results, we need a few definitions. As usual, [n] denotes the
set {1, . . . , n}. Given an n×n matrix A, we use ‖A‖p to denote its Lp norm,
defined by ‖A‖pp = 1

n2

∑
i,j |Aij |p. Given a graph G on [n], we use A(G)

to denote the adjacency matrix of G, and ρ(G) = ‖A(G)‖1 to denote its
density. We identify partitions of [n] into k classes (some of which can be
empty) with maps τ : [n]→ [k], where Vi = Vi(τ) = τ−1({i}) is the ith class
of the partition. Given such a map and a k × k matrix B, we will use Bτ

for the n × n matrix with entries (Bτ )ij = Bτ(i)τ(j). Finally, for an n × n
matrix A, we use Aτ to denote the matrix where for each (x, y) ∈ Vi × Vi,
the matrix element Axy is replaced by the average over Vi × Vj , and A/τ to
denote the k × k matrix of block averages

(A/τ)ij =
1

|Vi| |Vj |
∑

(u,v)∈Vi×Vj

Auv,

defined to be 0 if either Vi or Vj is empty; note that the two are related by
Aτ = (A/τ)τ .

Throughout this paper, we will assume that the graph is sparse (in the
sense that ρ→ 0), but that it has divergent average degree (i.e., we assume
that nρ→∞). Under these assumptions we will prove the following results.

2.1. Least squares estimation. Given an input graph G on n vertices and
a parameter κ ∈ (0, 1] such that κn ≥ 1, let

(2.3) (τ̂ , B̂) ∈ argmin
τ,B

‖A(G)−Bτ‖2,

where the optimization is over all k×k matrices B and all partitions τ : [n]→
[k] such that all non-empty classes of τ have size at least bκnc, with k chosen
so that it can accommodate all such partitions, say k = d n

bnκce. Setting

p̂i = 1
n |Vi(τ̂)| to be the relative size of the ith partition class of τ̂ , the least

squares algorithm then outputs the block model Ŵ = (p̂, B̂). Note that the
above minimization problem is slightly helped by the fact that we minimize
the L2 norm. For a given τ , the minimizer B̂ can therefore be obtained by
averaging A(G) over the classes of τ , showing that B̂ is of the form A(G)/τ .
Nevertheless the algorithm is inefficient, since we still need to minimize over
partitions τ : [n]→ [k].

Our main result concerning this algorithm is that if G is a W -random
graph at target density ρ and W ∈ L2, then the algorithm is consistent in
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the sense that δ2

(
1
ρŴ , 1

‖W‖1W
)
→ 0 with probability 1 as n→∞, as long

as κ→ 0 and κ−2 log(1/κ) = o(nρ). To give a quantitative error bound, we
define

tail(p)ρ (W ) := ‖W −min{W,ρ−1}‖p,

a quantity which measures the difference between W and 1
ρ min{1, ρW}

and tends to 0 as ρ → 0 provided W ∈ Lp. Note that in addition to the

oracle error ε
(2)
≥κ(W ), an error term reflecting the difference between W and

1
ρ min{1, ρW} is unavoidable, since the parts of W that are larger than 1/ρ
are not reflected in the distribution of Gn(ρW ).

Theorem 2.1. Let W be an L2 graphon, normalized so that ‖W‖1 = 1,

and let Ŵ = (p̂, B̂) be the output of the least squares algorithm (2.3) for a
W -random graph G on n vertices with target density ρ.

(i) If κ ∈ (n−1, 1] and 1+log(1/κ)
κ2

= O(ρn), then

δ2

(1

ρ
Ŵ ,W

)
= Op

(
ε

(2)
≥κ(W ) + 4

√
1 + log(1/κ)

κ2ρn
+

4

√
log n

κn
+ tail(2)

ρ (W )

)
.

(ii) If κ ∈ (0, 1] is fixed and ρ = ρn is such that ρn → 0 and nρn → ∞,
then

δ2

(1

ρ
Ŵ ,W

)
→ ε

(2)
≥κ(W ) with probability 1.

(iii) If ρ = ρn and κ = κn are such that ρn → 0, nρn →∞, κn → 0, and
κ−2
n log(1/κn) = o(nρn) as n→∞, then

δ2

(1

ρ
Ŵ ,W

)
→ 0 with probability 1.

The proof is given in Section 4 and Appendix D.
The conditions on ρn in Theorem 2.1 are very natural: they simply say

that the graph is sparse but the average degree tends to infinity. The con-
ditions on κn are an artifact of our proof techniques, but they have a rea-
sonable interpretation. For example, if we disregard the logarithmic factor,
κ−2
n log(1/κn) = o(nρn) says that the number of parts in the partition must

be asymptotically smaller than the square root of the average degree.
The four error terms in part (i) arise for different reasons. First, when

estimating the L2 distance between the matrix of probabilities Qn and the
estimator Ŵ , one encounters an oracle error for Qn and a concentration
error, the latter being the second error term. Second, one encounters an
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additional error when bounding the oracle error for Qn in terms of the
oracle error for W . Since Qn is random, this involves another concentration
error, which is the third term. Finally, we need to estimate the δ2 distance
between W and 1

ρQn, which involves bounding both the distance between W

and 1
ρ min{1, ρW}, and the distance between min{1, ρW} and Qn. It turns

out that the latter error can be absorbed in the other terms present above,

while the former leads to the term tail
(2)
ρ (W ).

Note that the term 4

√
1+log(1/κ)

κ2ρn
in the oracle inequality is larger than

the next term 4

√
logn
κn when ρ ≤ 1/ log n. We have included both terms to

handle the case in which ρ is large enough that the latter term dominates,

but 4

√
1+log(1/κ)

κ2ρn
should be viewed as the primary term.

We expect these bounds can be improved. From our perspective, their
purpose is to give concrete meaning to asymptotic consistency by providing
specific guarantees. In the case of bounded graphons, the optimal conver-
gence rate is known [37, 45], and it is better than what can be deduced
from our theorem. For comparison, when ρ = n−1/2, κ = n−1/6, and W is a
bounded graphon, Proposition 2.1 of [45] implies that

δ2

(1

ρ
Ŵ ,W

)
= Op

(
ε

(2)
≥κ(W ) +

√
log n

n1/4

)
,

while Theorem 2.1 implies that

δ2

(1

ρ
Ŵ ,W

)
= Op

(
ε

(2)
≥κ(W ) +

4
√

log n

n1/24

)
.

Obtaining a tight estimate for unbounded graphons, and thus heavy-tailed
graphs, will likely require further development of these techniques.

For general graphons, our results do not give explicit error bounds, since

all we know is that ε
(2)
≥κ(W ) and tail

(2)
ρ (W ) tend to 0 as κ → 0 and ρ → 0.

But in many applications, one has additional information on the generating
graphon, for example, that it is actually a stochastic block model with a

fixed number of classes, in which case both ε
(2)
≥κ(W ) and tail

(2)
ρ (W ) become

identically zero once κ and ρ are small enough, leaving us only with the
explicit terms in the above bound.

Another class of examples consists of α-Hölder-continuous graphons over
Rd equipped with a probability measure that decays fast enough to make
the function |x|β integrable. This class encompasses many models of latent
position spaces used in practice. When W is α-Hölder-continuous and |x|β

is integrable with α ∈ (0, 1] and β > 2α, we prove that ε
(2)
≥κ(W ) = O(κα

′
)



ESTIMATION FOR HEAVY-TAILED SPARSE GRAPHS 11

and tail
(2)
ρ (W ) = O(ρβ

′
) for some α′, β′ > 0, with α′ = α/d and β′ = ∞ in

the simple case of the uniform distribution over a box of the form [−R,R]d.
See Propositions 7.1 and 7.2 below.

This scaling behavior for the oracle error and tail bounds is typical. We
have stated the oracle inequality in full generality, but when the graphon is
sufficiently well behaved to estimate the oracle error and tail bounds, one
can balance the error terms and derive the scaling rate for κ that optimizes
these bounds. For example, suppose the error bound is

Op

(
κα
′
+ 4

√
1 + log(1/κ)

κ2ρn
+

4

√
log n

κn
+ ρβ

′

)
.

Choosing κ proportional to
(

log(ρn)
ρn

) 1
4α′+2

optimizes this bound (assuming

nρ→∞ as n→∞) and yields an error bound of

Op

( log(ρn)

ρn

) α′
4α′+2

+ ρβ
′

,
which becomes Op

((
log(ρn)
ρn

) α
4α+2d

)
in the case of an α-Hölder-continuous

graphon over [−R,R]d equipped with the uniform distribution.

2.2. Cut norm estimation for general L1 graphons. To give an explicit
description of the least cut norm algorithm, we need the notion of the cut
norm, first introduced in [36]. For an n× n matrix A, it is defined as

(2.4) ‖A‖� = max
S,T⊆[n]

1

n2

∣∣∣ ∑
(i,j)∈S×T

Aij

∣∣∣.
One way to define the least cut norm algorithm would be to output a block
model defined in terms of the minimizer of ‖A(G) − Bτ‖�. But since we
now need to minimize the cut norm rather than an L2 norm, this would
involve yet another optimization problem to find the best matrix B for each
distribution τ . To circumvent this issue, we always obtain B by averaging.
In other words, we calculate

(2.5) τ̂ ∈ argmin
τ
‖A(G)− (A(G))τ‖�,

where the argmin is again over partitions τ : [n]→ [k] such that every non-
empty partition class has size at least bκnc. The least cut norm algorithm



12 BORGS, CHAYES, COHN, AND GANGULY

then outputs the block average corresponding to τ̂ ; i.e., it outputs the block
model Ŵ = (p̂, B̂) where p̂i is again the relative size of the ith partition
class of τ̂ and B̂ = A(G)/τ̂ .

We will show that the least cut norm algorithm is consistent in the cut
metric δ� on graphons, defined similar to δp, except that now we use the cut
norm instead of the Lp norm ‖ · ‖p; see (3.3) below for the precise definition.
More precisely, we will show that a.s., the error in the δ� distance tends to
zero for a W -random graph G if κ→ 0 in such a way that κ−1 = o( n

logn). In
addition to consistency, we will again show a quantitative bound, this time
involving the oracle error and tail bound in the L1 norm.1

Theorem 2.2. Let W be an L1 graphon, normalized so that ‖W‖1 = 1,

and let Ŵ = (p̂, B̂) be the output of the least cut norm algorithm (2.5).
(i) If κ ∈ [ logn

n , 1], then

δ�

(1

ρ
Ŵ ,W

)
= Op

(
ε

(1)
≥κ(W ) +

√
1

ρn
+

√
log n

κn
+ tail(1)

ρ (W )

)
.

(ii) If κ ∈ (0, 1] is fixed and ρ = ρn is such that ρn → 0 and nρn → ∞,
then

lim sup
n→∞

δ�

(1

ρ
Ŵ ,W

)
≤ 2ε

(1)
≥κ(W ) with probability 1.

(iii) If ρ = ρn and κ = κn are such that ρn → 0, nρn →∞, κn → 0, and
logn
nκn
→ 0, then

δ�

(1

ρ
Ŵ ,W

)
→ 0 with probability 1.

The proof is given in Section 5 and Appendix E.
The four error terms in part (i) have the same explanation as those for

the least squares algorithm: the oracle error for W , a concentration error
appearing when estimating the cut norm error with respect to Qn, a con-
centration error stemming from the random nature of the oracle error for
Qn, and a tail bound stemming from the fact that for unbounded graphons,
the matrix Qn generating Gn involves a truncation of the entries that are
larger than 1. For Hölder-continuous graphons over Rd we can again give

explicit error bounds of the form ε
(1)
≥κ(W ) = O(κα

′
) and tail

(1)
ρ (W ) = O(ρβ

′
);

see Propositions 7.1 and 7.2 below.

1For analyzing the optimal convergence rate, it would be natural to use the cut norm
for the oracle and tail bounds. We use the L1 norm for two reasons: it fits naturally with
our proof techniques, and it suffices to obtain asymptotic consistency in Theorem 2.2(iii).
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2.3. Graphon estimation via degree sorting. The last algorithm we con-
sider in this paper is the degree sorting algorithm, which proceeds as follows.
Given a degree G on n vertices with vertex degrees d1, . . . , dn, we sort the
vertices by choosing a permutation σ of [n] such that

dσ(1) ≥ dσ(n) ≥ · · · ≥ dσ(n).

To separate the sorted vertices into k classes of nearly equal size, we choose
integers 0 = n0 < n1 < · · · < nk = n such that∣∣∣∣ni − in

k

∣∣∣∣ < 1,

and we define τ : [n] → [k] by τ(j) = i if ni−1 < σ(j) ≤ ni. Thus, τ groups
the vertices into k classes, sorted by degree. The output of the algorithm
is the block model Ŵ = (p̂, B̂) with p̂i = 1/k and B̂ = A(G)/τ . In other
words, we simply cluster vertices with similar degrees and then average over
these clusters.

This algorithm has the advantage of being very efficient, but it has no
hope of working unless the degrees suffice to distinguish between the vertices.
More precisely, we need the limiting distribution of normalized degrees to
be atomless (i.e., there should not exist a nonzero fraction of the vertices
with nearly the same degree). Note that this hypothesis is not satisfied
by stochastic block models, because vertices in the same block cannot be
distinguished by their degrees, but it holds generically.

If G is a W -random graph, then we can express the limiting degree dis-
tribution as n → ∞ in terms of W ; more precisely, it is just given by the
distribution function DW of the random variable Wx =

∫
W (x, y) dπ(y),

where y is chosen according to π; see Appendix B for the proof. The next
theorem states consistency of the degree sorting algorithm under the condi-
tion that the degree distribution of W is atomless.

Theorem 2.3. Let W be a graphon whose degree distribution function
DW : [0,∞) → [0, 1] is continuous, let Gn be a W -random graph on n ver-

tices with target density ρn, and let Ŵn be the output of the degree sorting
algorithm with kn parts and input Gn.

Suppose ρn → 0, nρn →∞, kn →∞, log kn = o(nρn), and kn = o
(
n
√
ρn
)

as n→∞. Then ρ−1
n Ŵn converges a.s. to W under δ1.

The proof is given in Section 6.
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2.4. Graphs with power-law degree distribution. To give an example of
how unbounded graphons can be analyzed, we consider two simple models for
graphs with power-law degree distributions. Both are generated by graphons
over [0, 1], with the first one given by W (x, y) = 1

2(g(x) + g(y)), where
g(x) = (1 − α)(1 − x)−α for some α ∈ (0, 1), and the second one given by
W (x, y) = g(x)g(y). Both can be seen to have a degree distribution with
density function f(λ) = Θ

(
λ−(1+1/α)

)
, i.e., a power-law degree distribution

with exponent 1 + 1
α . Both graphons are in Lp as long as 1 ≤ p < 1

α .
It turns out that the first graphon can be expressed as an equivalent

Hölder-continuous graphon over Rd equipped with a heavy-tailed distribu-
tion, while this is not possible for the second; see Appendix G for details.
But both fit into our general theory, implying consistency for all three al-
gorithms without any additional work, and both allow for explicit bounds
similar to the ones obtained for Hölder-continuous graphons, even though
only one of them can actually be expressed as a Hölder-continuous graphon.
See Lemma G.1 for the precise estimates.

2.5. Comparison with related results. As discussed above, our primary
contribution in this paper is to analyze the case of unbounded graphons,
thus removing the restriction to networks in which all the degrees are of the
same order. We also formulate our results over general probability spaces,
which increases their applicability. (One can always pass to an equivalent
graphon over [0, 1], but standardizing the underlying space prevents taking
advantage of any smoothness or regularity the graphon possesses, because
these properties are not invariant under equivalence.)

Least squares estimation is of course not a novel idea. Gao, Lu, and Zhou
[37] proved consistency of least squares estimation based on sparse graphs
obtained from bounded graphons satisfying a Hölder condition, and Wolfe
and Olhede proved consistency under a Hölder condition and boundedness
away from zero in an updated version of [63] that has not yet, as of this
writing, been circulated publicly. Borgs, Chayes, and Smith [20] and Klopp,
Tsybakov, and Verzelen [45] proved consistency for bounded graphons with
no Hölder conditions or additional assumptions, but they did not handle
the unbounded case. Our paper thus completes the analysis of this impor-
tant algorithm, by proving consistency even when the underlying graphon
is unbounded.

Bounded graphons are automatically square-integrable, but that is not
necessarily true for unbounded graphons. Least squares estimation is an
appropriate technique only for L2 graphons, and we propose least cut norm
estimation as a substitute that is applicable to arbitrary graphons.
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Exact optimization is computationally inefficient for both the least squares
and the least cut norm algorithms. Thus, our consistency results should be
viewed not as a proposal that exact optimization should be carried out in
practice for large networks, but rather as a benchmark for approximate or
heuristic optimization.

Degree sorting has the advantage of efficiency, although it works only
for graphons whose degrees are sufficiently well distributed. The idea of
clustering vertices according to degree has a long history (see, for example,
[33]), as well as connections with the theory of random graphs with a given
degree sequence [47, 24]. Degree sorting has recently been analyzed as a
graphon estimation algorithm by Chan and Airoldi [22]. They showed that
their sorting and smoothing algorithm is consistent for dense graphs under
two-sided Lipschitz conditions on the degrees of the underlying graphon.
Our analysis accommodates sparse graphs and even unbounded graphons,
while avoiding these Lipschitz conditions.

3. Graphons, identifiability, and graph convergence.

3.1. Notation. We will continue to use the notation from the previous
section. Specifically, [n] denotes the set {1, . . . , n},

‖A‖pp =
1

n2

∑
i,j

|Aij |p

for an n × n matrix A, and A(G) denotes the adjacency matrix of a graph
G on [n]. We identify partitions of [n] into k classes (some of which can be
empty) with maps τ : [n]→ [k], where Vi = Vi(τ) = τ−1({i}) is the ith class
of the partition. Given such a map and a k × k matrix B, we will use Bτ

for the n × n matrix with entries (Bτ )ij = Bτ(i)τ(j). Finally, for an n × n
matrix A, we use Aτ to denote the matrix where for each (x, y) ∈ Vi × Vi,
the matrix element Axy is replaced by the average over Vi × Vj , and A/τ to
denote the k × k matrix of block averages

(A/τ)ij =
1

|Vi| |Vj |
∑

(u,v)∈Vi×Vj

Auv,

defined to be 0 if either Vi or Vj is empty; note that the two are related by
Aτ = (A/τ)τ .

As usual, we use Sn to denote the set of permutations on [n]. We usually
assume that n ≥ 2 to avoid trivial counterexamples to assertions about
graphs or matrices. The density of a nonnegative n× n matrix H is defined
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as ρ(H) = 1
n2

∑
i,j Hij , and the density ρ(G) of a graph G is defined as the

density of its adjacency matrix. We use λ to denote the standard Lebesgue
measure on [0, 1] (or, when we do not expect this to create confusion, the
Lebesgue measure on [0, 1]2). We use ∆k to denote the simplex of probability
measures on [k], i.e., ∆k = {p = (pi) ∈ [0, 1]k :

∑
i pi = 1}. The notation

Op means big-O in probability: if X and Y are random variables, then
X = Op(Y ) means for each ε > 0, there exists an M such that |X| ≤M |Y |
with probability at least 1 − ε. Finally, we use the abbreviation a.s. for
“almost surely” or “almost sure” and i.i.d. for “independent and identically
distributed.”

We will also consider general probability spaces (Ω,F , π), where F is a
σ-algebra on Ω and π is a probability measure on Ω with respect to F . As
usual, a map φ : (Ω,F , π) → (Ω′,F ′, π′) is called measure preserving if for
all F ′ ∈ F ′, φ−1(F ′) ∈ F and π(φ−1(F ′)) = π′(F ′). We call such a map an
isomorphism if it is a bijection and its inverse is measure preserving as well,
and an isomorphism modulo 0 if, after removing sets of measure zero from Ω
and Ω′, it becomes an isomorphism between the resulting probability spaces.

In addition to the distance δp, we also consider the (in general larger)

distance δ̂p(A,B) between two n× n matrices A,B, defined as

(3.1) δ̂p(A,B) = min
σ∈Sn

‖Aσ −B‖p.

Note that by definition, δ̂p(A,B) is a distance invariant under relabeling;
i.e., it is a distance on equivalence classes of n× n matrices with respect to
relabeling of the “vertices” in [n]. We will need a similar version of the cut
distance ‖A−B‖�. It is defined as

(3.2) δ̂�(A,B) = min
σ∈Sn

‖Aσ −B‖�,

where ‖ · ‖� is defined in (2.4).
As pointed out in Section 1, for any practical application it is not enough

merely to obtain a close approximation to a matrix under a metric such
as δ̂p or δ̂�. Instead, it is important to obtain the relabeling σ as well.
All our algorithms have this property: they do not simply produce good
approximations in the abstract, but also explicit relabelings.

Note also that the L2 norm is related to a scalar product 〈·, ·〉 via ‖A‖22 =
〈A,A〉, with the scalar product between two n× n matrices A,B defined as

〈A,B〉 =
1

n2

∑
i,j∈[n]

AijBij .
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3.2. Graphons and the cut metric. Given a probability space (Ω,F , π), a
measurable functionW : Ω×Ω→ R is called symmetric ifW (x, y) = W (y, x)
for all x, y ∈ Ω. We call such a function a graphon if it takes nonnegative
values and ‖W‖1 <∞, where as usual, the Lp norm of a function f : Ω×Ω→
R is defined by ‖f‖pp =

∫
Ω×Ω |f(x, y)|p dπ(x) dπ(y). We call W an Lp graphon

if ‖W‖p <∞, and we say that W is normalized if ‖W‖1 = 1.
We will refer to W as a graphon over (Ω,F , π), or often just as a graphon

over Ω when the σ-algebra F and the probability measure π are clear from
the context. For example, when we say that W is a graphon over [0, 1], we
mean that W is a graphon over [0, 1] equipped with the Borel σ-algebra and
the uniform measure, unless stated otherwise.

Note that graphs are special cases of graphons: given a graph G with
vertex set V and adjacency matrix A, we view it as a graphon on V by
equipping V with the uniform distribution and choosing W (u, v) to be Auv.
We can also embed graphs into graphons over [0, 1] by first dividing [0, 1] into
n adjacent intervals I1, . . . , In of length 1/n and then setting the graphon
equal to Auv on Iu×Iv. The resulting graphon is called the empirical graphon
corresponding to G and will be denoted by W[G]. Note that W[G] is a pull-
back of the graph G considered as a graphon on [n] (under the map φ sending
Ik ⊆ [0, 1] to the point k ∈ [n]), so in particular G and W[G] are equivalent
as graphons.

In addition to the Lp norm of a graphon W , we will also use the cut norm
‖W‖�, defined as

‖W‖� = sup
S,T⊆Ω

∣∣∣∫
S×T

W (x, y) dπ(x) dπ(y)
∣∣∣,

where the supremum is over measurable subsets of Ω (i.e., elements of F).
The corresponding metric is defined for a pair of graphons W and W ′ on
two probability spaces (Ω,F , π) and (Ω′,F ′, π′) by

δ�(W,W ′) =

inf
ν

sup
S,T⊆Ω×Ω′

∣∣∣∫
S×T

(
W (x, y)−W ′(x′, y′)

)
dν(x, x′) dν(y, y′)

∣∣∣,(3.3)

where the infimum is over couplings ν of the two measures π and π′ and the
supremum is over measurable subsets of Ω×Ω′. Because graphs are special
cases of graphons, this in particular defines a distance between a graph and
an arbitrary graphon.

Remark 3.1. (i) We will often consider graphons over [0, 1] (with the
Borel σ-algebra unless otherwise specified). For such graphons, both the
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cut distance δ� and the Lp distance δp can be defined in a simpler way.
Specifically,

δp(W,W
′) = inf

Φ
‖WΦ −W ′‖p and

δ�(W,W ′) = inf
Φ
‖W φ −W ′‖�,

(3.4)

where the infima over Φ are over isomorphisms from [0, 1] to itself. In fact,
this simpler definition is equivalent to the definitions (1.1) and (3.3) for
many spaces used in practice, as long as they are atomless. See Lemma A.7
in Appendix A for the precise setting. This lemma also shows that for many
spaces of interest, the infima in the expressions (1.1) and (3.3) are actually
minima.

(ii) When comparing a finite graph G to a graphon W over [0, 1], we will
sometimes use an extension of the definition (3.1). It is defined as

(3.5) δ̂p(A,W ) = min
σ∈Sn

‖W[Aσ]−W‖p,

where (Aσ)ij = Aσ(i)σ(j) and W[·] is the empirical graphon defined above.

3.3. Examples of W -random graphs. Recall the definitions of a W -ran-
dom graph at target density ρ, denoted by Gn = Gn(ρW ), from Section 1
and the definition of the matrix Qn = Qn(ρW ) from Section 2. Considering
Qn as a weighted graph on n vertices, we often call it a weighted W -random
graph at target density ρ. Before giving a few examples, we note that for
n ≥ 2, the expected densities of the graphs Qn and Gn are ‖min{1, ρW}‖1,
which is (1 + o(1))ρ‖W‖1 provided ρ = ρn → 0 as n→∞. That is why we
call ρ the target density for Qn and Gn.

Example 3.2 (Stochastic block model on k blocks). Let Ω = [k], and let
the probability distribution π on Ω be given by a vector p = (p1, . . . , pk) ∈
∆k. Setting W (i, j) = βij for some symmetric matrix B = (βij) of non-
negative numbers then describes the standard stochastic block model with
parameters (p, B). We denote the set of all block models on k blocks by Bk
and use B to denote the union B =

⋃
k≥1 Bk. For κ ∈ (0, 1/2], we use B≥κ

to denote all block models (p, B) such that pi ≥ κ for all i.
Alternatively, we can use the uniform distribution over the interval [0, 1]

as our probability space. Then we define W̃ by first partitioning [0, 1] into

k adjacent intervals of lengths p1, . . . , pk, and then setting W̃ equal to βij
on Ii × Ij . Note that the random graphs generated by W and W̃ are equal

in distribution. We denote the graphon W̃ by W[p, B], or by W[B] if all the
probabilities pi are equal.
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Note that the output of our three algorithms are block models, in fact,
block models whose block sizes are all a multiple of 1/n.

Example 3.3 (Mixed membership stochastic block model). To express
the mixed membership block model of [4] as a W -random graph, we define Ω
to be the k dimensional simplex ∆k and equip it with a Dirichlet distribution
with some parameters α = (α1, . . . , αk). In other words, the probability
density at (p1, . . . , pk) is proportional to

∏
i p
αi−1
i . Given a symmetric matrix

(βij) of nonnegative numbers, we then define

W (p,p′) =
∑
i,j

βijpip
′
j .

As in the stochastic block model, βij describes the affinity between commu-
nities i and j, but now each vertex is assigned a probability distribution p
over the set of communities (rather than being assigned a single community).

3.4. Equivalence and identifiability. In this section, we discuss the notion
of equivalence introduced in the context of in Theorem 1.1. We start with
the following remark.

Remark 3.4. As claimed in the introduction, the metric (1.1) is indeed
a distance on equivalence classes; in other words, δp(W,W

′) = 0 if W and
W ′ are equivalent. To see this, let φ and φ′ be measure preserving transfor-
mations such that a.s., W = Uφ and W ′ = Uφ

′
for some graphon U over

(Ω′′,F ′′, π′′). Define a coupling dν(x, x′′) of π′′ and π by choosing x ∈ Ω
according to π and then setting x′′ = φ(x). Using this coupling, it is easy
to see that δp(U,W ) = 0. Similarly, δp(U,W

′) = 0, which together with the
triangle inequality proves the claim.

Theorem 3.5. Let W be a graphon over an arbitrary probability space
(Ω,F , π). Then there exists an equivalent graphon over [0, 1] equipped with
the uniform distribution.

The theorem follows easily from the results of [16]. See Appendix A,
where we also show that every graphon is equivalent to a twin-free graphon
(Theorem A.5).

Our next theorem gives a different characterization of equivalence in terms
of the metrics δp and δ�.

Theorem 3.6. Let p ≥ 1, and let W and W ′ be Lp graphons over two
arbitrary probability spaces. Then the following statements are equivalent:
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(i) δ�(W,W ′) = 0;
(ii) δp(W,W

′) = 0;
(iii) W and W ′ are equivalent.

The theorem follows again from the results of [16], even though the details
are a little more involved than for the previous theorem and in particular
make use of the fact that the infimum in (3.3) is actually a minimum if the
underlying space is the unit interval. See Appendix A for the proof.

Remark 3.7. In a purely measure-theoretic study of W -random graphs,
we could restrict our attention to graphons over the unit interval without
any loss of generality, since by Theorem 3.5, every integrable graphon W is
equivalent to a graphon W ′ defined over [0, 1]. However, when W is given in
an application, it is often a continuous function over a higher dimensional
space, and while W ′ leads to the same distribution of W -random graphs,
the transformation from W to W ′ ruins continuity, which is often needed
to prove good approximation bounds. For applications, the general setup is
therefore more natural.

3.5. Relation to graph convergence. As mentioned before, W -random
graphs arise very naturally as nonparametric models when considering a
given graph as a finite subgraph of an infinite, exchangeable array, at least
in the dense setting. Indeed, as the works of Hoover [42] and Aldous [6] show,
any graph which is an induced subgraph of an infinite, exchangeable array
can be modeled as a W -random graph for some (possibly random) graphon
W .

A different window into the theory of W -random graphs is given by the
theory of graph convergence. Here one asks when a sequence of graphs Gn
should be considered convergent. Motivated by extremal combinatorics, one
way to address this question is to define a sequence of graphs to be conver-
gent if the number of subgraphs isomorphic to a given graph H converges
for every finite graph H, once suitably normalized. It turns out that in the
dense setting, this notion is equivalent to many other natural notions of
graph convergence that are relevant in computer science, statistical physics,
and other fields [17, 18, 19].

One of these equivalent notions is convergence in metric, defined in terms
of the cut metric (3.3). We say that a sequence of dense graphs converges
to a graphon W in metric if δ�(Gn,W ) → 0 as n → ∞. Note that the
limit W is not unique, since two graphons W and W ′ that are equivalent
have distance δ�(W,W ′) ≤ δ1(W,W ′) = 0. The results of [16] imply that
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this is the only ambiguity: if W and W ′ are such that δ�(Gn,W ) → 0 and
δ�(Gn,W

′)→ 0, then W and W ′ are equivalent.
Given this notion of convergence, one may ask whether all sequences of

graph Gn have a limit, or whether they at least have a subsequence which
converges in the metric δ�. For dense graphs, the answer to this question is
yes and was given in [51], where it was shown that every sequence of dense
graphs has a subsequence that is a Cauchy sequence in the metric δ�, and
that every Cauchy sequence converges to a graphon over [0, 1].

Thus the results of [51] completely parallel the results on exchangeable
arrays of [42, 6]: given an ergodic component of an infinite, exchangeable
graph, one can find a graphon over [0, 1] that generates this array, and
given an arbitrary sequence of (random or non-random) dense graphs, one
can find a subsequence and a graphon over [0, 1] such that the subsequence
converges to that graphon. In both cases, the graphon is identifiable only
up to equivalence. Finally, combining [51] with [16], we know that if the
sequence of graphs happens to be a sequence of W -random graphs, then it
converges a.s., and the generating graphon W is a representative from the
equivalence class of limits.

The net result of this theory is that a convergent sequence of dense net-
works behaves like a sequence of W -random graphs for some graphon W
and can thus be viewed as W -quasi-random graphs. Having established this
connection between W -random graphs and W -quasi-random graphs in the
dense setting, one might ask whether it can be extended to a convergence
theory for sparse graph sequences. The answer turns out to be yes, provided
we modify the definition of convergence in metric appropriately. To this end
we define, for an arbitrary graph G with adjacency matrix A(G) and a con-
stant c ∈ R, the graph cG to be the weighted graph with adjacency matrix
cA(G).

Definition 3.8. Let W be a graphon over an arbitrary probability
space. A sequence of graphs Gn converges to W in metric if

δ�

( 1

ρ(Gn)
Gn,W

)
→ 0 as n→∞.

In this case, we call Gn a W -quasi-random sequence with target density
ρ(Gn)‖W‖1.

Remark 3.9. This definition is an extension of the one given in [15]
for graphons W over [0, 1]. There, as in the earlier literature on graph con-
vergence for dense graphs, the distance between a graph G and a graphon
W was defined as the distance between W and the embedding W[G] of
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G into the space of graphons over [0, 1]. In our setting, this embedding is
not needed, since the cut distance (3.3) is defined on equivalence classes of
graphons, and G and its embedding W[G] are equivalent.

Given the above definition of convergence for sparse graphs, one might ask
whether this notion is again equivalent to other notions of convergence, and
whether sparse W -random graphs converge again to the generating graphon.
The answer to both questions is yes, with one exception: convergence of
subgraph counts is no longer equivalent to convergence in metric. But all
other notions of convergence proved to be equivalent for dense graphs in [19]
remain equivalent in the sparse setting, as shown in [14]. It is also again true
that a sequence of W -random graphs converges to the generating graphon.
This is the content of the following theorem.

Theorem 3.10. Let Gn = Gn(ρnW ) where W is a normalized graphon
over an arbitrary probability space, and ρn → 0 in such a way that nρn →∞.
Then a.s. ρ(Gn)/ρn → 1 and

δ�

( 1

ρ(Gn)
Gn,W

)
→ 0.

Proof. For graphons over [0, 1], this theorem was established in [15].
The general case follows from observing that by Theorem 3.5, we can find a
graphon over [0, 1] that is equivalent to W . Since equivalent graphons lead
to identically distributed random graphs, this proves the claim.

Remark 3.11. (i) Theorems 3.10 and 3.6 immediately imply Theo-
rem 1.1. Indeed, let Gn = Gn(ρnW ) and G′n = Gn(ρnW

′). By Theorem 3.10,
δ�( 1

ρn
Gn,W ) → 0 and δ�( 1

ρn
G′n,W

′) → 0, and hence δ�(W,W ′) = 0 if Gn
and G′n are identically distributed. By Theorem 3.6, this implies that W
and W ′ are equivalent. Since, on the other hand, Gn and G′n are clearly
identically distributed if W and W ′ are equivalent, this proves Theorem 1.1.

(ii) Theorem 3.10 has interesting consequences for graphon estimation.

Assume that an algorithm produces an estimator Ŵ for the generating
graphon W which is close in δp for p ≥ 1. These distances dominate the
invariant L1 distance δ1, which in turn dominates the cut distance δ�. Com-
bined with the results from [14] which state that many other notions of
convergence are equivalent to convergence in metric (see Theorem 2.10), we
obtain that consistent approximation for W leads to consistent approxima-
tions for various quantities of interest, such as minimal energies of graphical
models defined on Gn (see Proposition 5.11 in [14], which actually gives
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a quantitative bound in terms of the cut distance) or collections of cuts
in Gn (see Lemma 5.10 in [14], which again gives a quantitative bound).
By Theorem B.1 below, we also get good approximations for the empirical
distributions of the degrees of Gn.

4. Least squares estimation. In this section, we present the main
steps in the proof of Theorem 2.1. They are based on the following two
observations. First, for any map τ : [n]→ [k] and any k × k matrix B,

‖A(G)−Bτ‖22 = ‖A(G)‖22 − 2〈A(G), Bτ 〉+ ‖Bτ‖22.

Therefore, the argmin of the left side is the argmax of 2〈A(G), Bτ 〉−‖Bτ‖22.
Second, conditioned on the weighted W -random graph Q = Qn(ρnW ),

E
[
2〈A(G), Bτ 〉 − ‖Bτ‖22

]
= 2〈Q,Bτ 〉 − ‖Bτ‖22.

Up to errors stemming from imperfect concentration, we therefore expect
that the argmin (B̂, τ̂) from (2.3) is a maximizer for 2〈Q,Bτ 〉 − ‖Bτ‖22, and
hence a minimizer for ‖Q−Bτ‖2. Thus, we would expect that, again up to

issues of concentration, the L2 error is bounded by a term ε̂
(2)
≥κ(Q) defined

as follows. For an arbitrary n× n matrix H, we set

ε̂
(2)
≥κ(H) = min

B∈An,≥κ
‖H −B‖2,

where An,≥κ is the set of all n × n matrices made up of constant blocks of
size at least bκnc.

For bounded graphons, this strategy was implemented in [20], leading to a
proof of consistency for all bounded graphons W and a differentially private
algorithm achieving the same goal under slightly less general conditions (re-
quiring ρn to grow at least like log n). For the case of general L2 graphons,
the above motivation still lies behind our proof, but the actual implemen-
tation proceeds along slightly different lines, and combines elements of the
(sparse graph) strategy of [20] with elements of the (dense graph) strategy
developed in [37].

The resulting estimates are stated in Theorem 4.1, which bounds the
L2 difference between the output of the algorithm (2.3) and the matrix Q

in terms of ε̂
(2)
≥κ(Q) and an error term representing errors from imperfect

concentration. To obtain Theorem 2.1 from Theorem 4.1, we will need to
transform an estimate on the L2 error with respect to Q into an L2 error

with respect to W , and we will want to express the result in terms of ε
(2)
≥κ(W )
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instead of ε̂
(2)
≥κ(Q). This leads to two extra error terms, the last two terms

in the bound of statement (i) in Theorem 2.1; see Appendix D for details.
To state Theorem 4.1 formally, we note that the output of the least squares

algorithm consists of block models of the form Ŵ = (p̂, B̂), where p̂ is an
integer multiple of 1/n. As a consequence, it can equivalently be represented

by an n×n matrix Mn(Ŵ ) ∈ An,≥κ, where Mn(Ŵ ) is the block matrix with

entries B̂ij and block sizes pin× pjn.

Theorem 4.1. Let W be an L2 graphon, normalized so that ‖W‖1 = 1,
let 0 < ρ, κ ≤ 1 and n ∈ N, let G = Gn(ρW ) and Q = Qn(ρW ), and let

Ŵ = (p̂, B̂) be the output of the least squares algorithm (2.3) with input G.

If nκ > 1 and 1+log(1/κ)
κ2

= O(ρn), then

δ̂2

(
Mn(Ŵ ), Q

)
≤ ε̂(2)
≥κ(Q) +Op

(
ρ 4

√
1 + log(1/κ)

κ2ρn

)
,

where the constant implicit in the Op symbol depends on the L2 norm of W .
If ρ = ρn is such that nρn → ∞ and ρn → 0, then almost surely, for n

large enough and all κ with nκ > 1 and 1+log(1/κ)
κ2

= O(ρn),

δ̂2

(
Mn(Ŵ ), Q

)
≤ ε̂(2)
≥κ(Q) +O

(
ρ 4

√
1 + log(1/κ)

κ2ρn

)
,

where again the constant implicit in the big-O symbol depends on the L2

norm of W .

Proof. Let M̂ = Mn(Ŵ ), A = A(G), and k = d n
bκnce. As a first step,

we will prove that

(4.1) δ̂2

(
M̂,Q

)
≤ ε̂(2)
≥κ(Q) + 2kε+ 2

√
kε‖Q‖2,

where
ε = max

τ : [n]→[k]
‖Aτ −Qτ‖1.

To prove (4.1) we note that M̂ = Mn(Ŵ ) is a minimizer of ‖A−M‖2 over
all M ∈ An,≥κ. As a consequence,

−2〈A, M̂〉+ ‖M̂‖22 ≤ −2〈A,M〉+ ‖M‖22
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for all M ∈ An,≥κ, which in turn implies that

δ̂2

(
M̂,Q

)2
≤
∥∥M̂ −Q∥∥2

2

≤ ‖M‖22 − 2
〈
M̂,Q

〉
+
∥∥Q∥∥2

2
+ 2
〈
M̂ −M,A

〉
=
∥∥M −Q∥∥2

2
+ 2
〈
M̂ −M,A−Q

〉
.

Since M,M̂ ∈ An,≥κ, we know that there are partitions τ, τ̂ : [n]→ [k] such

that M = Mτ , M̂ = M̂τ̂ , and all non-empty classes of τ and τ̂ have size at
least bκnc. As a consequence,

|〈M,A−Q〉| = |〈M, (A−Q)τ 〉| ≤ ‖M‖∞‖(A−Q)τ‖1 ≤ ε‖M‖∞.

Furthermore,

‖M‖∞ ≤
n

bκnc
‖M‖2 ≤ k‖M‖2,

because M is an n × n block matrix such that each block contains at least
bκnc2 elements (and thus n2‖M‖22 =

∑
i,jM

2
i,j ≥ bκnc2‖M‖2∞). It follows

that
|〈M,A−Q〉| ≤ kε‖M‖2.

Bounding |〈M̂,A−Q〉| in the same way, we find that

δ̂2

(
M̂,Q

)2
≤
∥∥M −Q∥∥2

2
+ 2kε(‖M‖2 + ‖M̂‖2).

Bounding ‖M̂‖2 = δ̂2(0, M̂) ≤ ‖Q‖2 + δ̂2

(
M̂,Q

)
and ‖M‖2 ≤ ‖Q‖2 +‖M −

Q‖2, a small calculation then shows that(
δ̂2

(
M̂,Q

)
− kε

)2
≤
(∥∥M −Q∥∥

2
+ kε

)2
+ 4kε‖Q‖2.

Choosing M in such a way that ε̂
(2)
≥κ(Q) = ‖M −Q‖2, this proves (4.1).

For all τ : [n] → [k], we have E[Aτ | Q] = Qτ . Using this fact and a con-
centration argument, one can show that conditioned on Q, with probability
at least 1− e−n

(4.2) ε ≤ 8

√
ρ(Q)

(
1 + log k

n
+
k2

n2

)
,

whenever ρ(Q)n ≥ 1; see Lemma H.2 in Appendix H. The lemma also gives
a bound on the expectation, implying in particular that conditioned on Q,

ε = Op

(√
ρ(Q)

(
1 + log k

n
+
k2

n2

))
,
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whether or not the condition ρ(Q)n ≥ 1 holds. (Specifically, the probability
that ε exceeds this bound by a factor of M can be no larger than 1/M , or
else the expectation would be too large.)

Since E[ρ(Q)] ≤ ρ‖W‖1 = ρ and E[‖Q‖22] ≤ ρ2‖W‖22, this proves that

2kε+ 4
√
kε‖Q‖2 = Op

(
ρ

√
k2(1 + log k)

ρn
+

k4

ρn2

)

+Op

(
ρ 4

√
k2(1 + log k)

ρn
+

k4

ρn2

)
,

with the constant implicit in the Op symbol depending on ‖W‖2. To trans-
form this bound into the bound in the statement of the theorem, we observe
that for κ = 1, k = d n

bκnce is equal to 1
κ , while for κ < 1, the assumption

nκ > 1 implies that k = d n
bκnce ≤

3
2κ . In either case,

k2(1 + log k)

n
= O

(
1 + log(1/κ)

κ2n

)
and

k4

n2
= O

(
1

κ4n2

)
= O

((
1 + log(1/κ)

κ2n

)2
)

= O

(
1 + log(1/κ)

κ2n

)
,

where in the last step we used the fact that the assumption 1+log(1/κ)
κ2

=

O(ρn) implies that 1+log(1/κ)
κ2n

= O(1). Thus,

2kε+ 4
√
kε‖Q‖2 = Op

(
ρ

√
1 + log(1/κ)

κ2ρn
+ ρ 4

√
1 + log(1/κ)

κ2ρn

)

= Op

(
ρ 4

√
1 + log(1/κ)

κ2ρn

)
,

because 1+log(1/κ)
κ2ρn

= O(1). This completes the proof of the bound in proba-
bility.

To prove the a.s. statement, we note that by Lemma C.6 in Appendix C,
ρ(Qn)/ρn → 1, which together with the hypothesis that nρn → ∞ implies
that almost surely, nρ(Qn) ≥ 1 holds for sufficiently large n, which allows
us to use the bound (4.2). By a simple union bound, this bound holds for
all k ≤ n with probability at least 1 − ne−n. Since the failure probability
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is summable, we conclude that there exists a random n0 (depending on W
and the sequence ρn, but not on k or κ) such that the bound (4.2) holds for
all n ≥ n0 and all k ≤ n. Combined with the fact that by the law of large
numbers for U -statistics (see Lemma C.3 in Appendix C), 1

ρn
‖Q‖2 → ‖W‖2

a.s. as n→∞, we obtain the almost sure statement of the theorem.

As noted above, see Appendix D for the derivation of Theorem 2.1 from
Theorem 4.1.

5. Least cut norm estimation. In this section, we outline the main
steps in the proof of Theorem 2.2. The proof relies again on a concentration
argument, this time starting from the observation that for all S, T ⊆ [n],

(5.1) E
[ ∑

(x,y)∈S×T

Axy(G)
]

=
∑

(x,y)∈S×T

Qxy.

Therefore, up to issues of concentration, minimizing the cut distance between
A(G) and a block model in

B≥κ,n := {(p, B) ∈ B : for all i, pin ∈ Z and pin ≥ bnκc}.

is the same as minimizing the cut distance between Q and a block model in
B≥κ,n. In other words, up to issues of concentration, one might hope that

the distance between Q and the output Ŵ of the algorithm (2.5) is just
ε̂≥κ,�(Q), where for an arbitrary n× n matrix H,

ε̂≥κ,�(H) = min
B∈An,≥κ

‖H −B‖�.

It turns out that we lose a factor of two with respect to this optimum, due to
the fact that in (2.5), we optimize over all block matrices of the form A(G)τ ,
rather than all block matrices that are constant on the blocks determined by
τ . While these two minimizations are equivalent in the least squares case,
they are not here, leading to the loss of a factor of two. (At the cost of
an even slower algorithm, this could be cured by redefining the algorithm
(2.5) to optimize over all block matrices that are constant on the blocks
determined by τ .)

The following theorem states our approximation guarantees with respect
to Q. Theorem 2.2 follows from it in essentially the same way as Theorem 2.1
follows from Theorem 4.1; see Appendix E for details. To state the theorem,
we recall the definition (3.2) of the distance δ̂�.
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Theorem 5.1. Let W be a normalized L1 graphon, let 0 < ρ ≤ 1 and
n ∈ N, and let G = Gn(ρW ) and Q = Qn(ρW ). If κ ∈ (n−1, 1] and Ŵ =
(p̂, B̂) is the output of the least cut norm algorithm (2.5) with input G, then

δ̂�

(
Mn(Ŵ ), Q

)
≤ 2ε̂≥κ,�(Q) +Op

(
ρ

√
1

ρn

)
.

If ρ = ρn is such that nρn → ∞ and ρn → 0, then almost surely, for n
large enough and all κ ∈ (n−1, 1],

δ̂�

(
Mn(Ŵ ), Q

)
≤ 2ε̂≥κ,�(Q) +O

(
ρ

√
1

ρn

)
.

We will prove the theorem in Appendix E.

6. Degree sorting. To analyze the degree sorting algorithm, it is useful
to study the distribution function DW of the marginal

Wx =

∫
W (x, y) dπ(y),

where y is chosen according to π:

(6.1) DW (λ) = π({x : Wx ≤ λ}).

We start with the observation that DW is continuous if and only if the
degree distribution of W is atomless. Graphons with this property have a
useful characterization as graphons over [0, 1]:

Lemma 6.1. The degree distribution function DW of a graphon W is
continuous if and only if W is equivalent to a graphon U over [0, 1] whose
degrees Ux are strictly decreasing in x.

Proof. Every graphon W is equivalent to a graphon U over [0, 1] by
Theorem 3.5, and via monotone rearrangement we can furthermore assume
that Ux is weakly decreasing in x (see [57] for a thorough discussion of
the measure-theoretic technicalities). Furthermore, the degree distribution
of U is atomless if and only if x 7→ Ux is non-constant on every set of
positive measure. In other words, DU is continuous if and only if Ux is
strictly decreasing in x.

If W is a graphon over (Ω,F , π) and P is a partition of Ω into finitely
many measurable pieces, then WP denotes the step function defined by

WP(x, y) =
1

π(I)π(J)

∫
I×J

W (u, v) dπ(u) dπ(v)
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whenever x is in the part I of P and y is in the part J . (This is not well
defined for parts of measure zero, but they can be ignored.) We will need the
following sufficient condition for when averaging over partitions converges
under the L1 norm.

Lemma 6.2. Let W be an L1 graphon over [0, 1], and let P1,P2, . . .
be partitions of [0, 1] into finitely many measurable pieces. Let pn,ε be the
probability that independent random elements x, y ∈ [0, 1] satisfy |x−y| ≥ ε,
conditioned on x and y lying in the same part of Pn. If

lim
n→∞

pn,ε = 0

for each ε > 0, then
lim
n→∞

||WPn −W ||1 = 0.

See Appendix C.3 for the proof of Lemma 6.2.

Proof of Theorem 2.3. By Lemma 6.1, we can assume that W is a
graphon over [0, 1] for which the degrees Wx are strictly decreasing in x.

Let Ii,n = [(i − 1)/n, i/n], so that I1,n, I2,n, . . . , In,n form a partition of
[0, 1] (up to the measure-zero set of their endpoints, which we will ignore).
We will assume the vertices of Gn are ordered so that the corresponding
sample points in [0, 1] satisfy x1 < x2 < · · · < xn, and we view Gn as a
graphon over [0, 1] via the blocks Ii,n and this vertex ordering.

Let d1, . . . , dn be the vertex degrees, and set d̄ = (d1 + · · ·+dn)/n. Recall
that the degree sorting algorithm works as follows. We choose a permutation
σ of [n] such that

dσ(1) ≥ dσ(n) ≥ · · · ≥ dσ(n)

and integers 0 = n0 < n1 < · · · < nk = n such that∣∣∣∣ni − in

k

∣∣∣∣ < 1.

Then we define τ : [n]→ [k] by τ(j) = i if ni−1 < σ(j) ≤ ni. The output of

the algorithm is the block model Ŵ = (p̂, B̂) with p̂i = 1/k and B̂ = A(G)/τ .
Let V1, . . . , Vk be the preimages of 1, . . . , k under τ , and set

Ji =
⋃
j∈Vi

Ij,n.

Then J1, . . . , Jk form a partition Pn of [0, 1], and Ŵn is equivalent to (Gn)Pn .
(Recall that we view Gn as a graphon over [0, 1].) We wish to prove that

δ1

(
ρ−1
n (Gn)Pn ,W

)
→ 0.
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In fact, we will prove that
∥∥ρ−1

n (Gn)Pn −W
∥∥

1
→ 0, given our ordering of

the vertices of Gn.
We will use the notation established in previous sections, such as Qn for

the weighted random graph used to generate Gn. As shown in Lemma C.6
in Appendix C.2, a.s. ρ(Qn)/ρn → 1 and ‖ρ−1

n Qn −W‖1 → 0.
We begin with the inequality∥∥ρ−1

n (Gn)Pn −W‖1 ≤
∥∥ρ−1

n (Gn)Pn − ρ−1
n (Qn)Pn

∥∥
1

+
∥∥ρ−1

n Qn −W
∥∥

1
+∥∥ρ−1

n (Qn)Pn − ρ−1
n Qn

∥∥
1
.

The second term on the right tends to zero a.s. For the first term, we have∥∥ρ−1
n (Gn)Pn − ρ−1

n (Qn)Pn
∥∥

1
= ρ−1

n

∥∥(Gn)Pn − (Qn)Pn
∥∥

1
.

Using Lemma H.2 and ρ(Qn)/ρn → 1 a.s., we can bound
∥∥(Gn)Pn−(Qn)Pn

∥∥
1

by O

(√
ρ
(

1+log k
n + k2

n2

))
a.s., and thus the hypotheses log kn = o(nρn) and

kn = o
(
n
√
ρn
)

imply that∥∥ρ−1
n (Gn)Pn − ρ−1

n (Qn)Pn
∥∥

1
→ 0.

All that remains is to handle the third term,
∥∥ρ−1

n (Qn)Pn−ρ−1
n Qn

∥∥
1
. Because∥∥ρ−1

n Qn −W
∥∥

1
→ 0, it will suffice to show that

∥∥WPn −W∥∥1
→ 0. We will

do so using Lemma 6.2.
Fix ε > 0, and let pn,ε be the probability that independent random ele-

ments x, y ∈ [0, 1] satisfy |x − y| ≥ ε, conditioned on x and y lying in the
same part of Pn. By contrast, let p′n,ε be the probability that |x−y| ≥ ε and
both points lie in the same part of Pn, without the conditioning. Because
each part Ji of Pn satisfies λ(Ji) = (1 + o(1))/kn, proving that pn,ε → 0 is
equivalent to proving that knp

′
n,ε → 0. Thus, to apply Lemma 6.2, we must

show that knp
′
n,ε → 0.

Instead of analyzing the points x and y, it will be convenient to consider
the intervals I`,n and Im,n containing them. We will use the bound

p′n,ε ≤ Pr
`,m∈[n]

(
τ(`) = τ(m) and max{|x− y| : x ∈ I`,n, y ∈ Im,n} ≥ ε

)
= Pr

`,m∈[n]

(
τ(`) = τ(m) and |`/n−m/n| ≥ ε− 1/n

)
,

(6.2)

where of course Pr`,m∈[n] denotes the probability if ` and m are chosen
uniformly at random from [n].
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To analyze these probabilities, we need to bound how close the degrees
in Gn are to those in W . Convergence of degree distributions is analyzed
in Appendix B, and Lemma B.2 provides suitable bounds. To apply this
lemma, we must quantify how quickly the degrees in W change as a function
of distance. Let

δ = inf
|x−y|≥ε/4−1/n

|Wx −Wy|.

Because x 7→ Wx is strictly decreasing, δ > 0. Call an element i ∈ [n] good
if the normalized degree di/d̄ is within δ/3 of Wx for some x ∈ Ii,n. Taking
U = ρ−1

n Gn in Lemma B.2 shows that the fraction of bad elements is at
most

2

δ/3
‖ρ−1

n Gn −W‖�,

which tends to zero as n → ∞. If i and j are good and |i/n − j/n| ≥ ε/4,
then ∣∣∣∣did̄ − dj

d̄

∣∣∣∣ ≥ δ/3.
It follows that if i and j are good and |i/n− j/n| ≥ 3ε/4, then at least the
middle bnε/4c vertices between i and j have degrees strictly between di and
dj . When n is large enough, this is much larger than the number of vertices
in any part of Pn. In particular, if n is large enough then good i and j with
|i/n−j/n| ≥ 3ε/4 cannot possibly end up in the same part after the degrees
are sorted.

Thus, by (6.2),

p′n,ε ≤ Pr
`,m∈[n]

(
` or m is bad and τ(`) = τ(m)

)
≤ 2 Pr

`,m∈[n]

(
` is bad and τ(`) = τ(m)

)
≤ 2 Pr

m∈[n]

(
` is bad

)
max
i
λ(Ji)

≤ 4

δ/3
‖ρ−1

n Gn −W‖�
1 + o(1)

kn
.

It now follows from ‖ρ−1
n Gn −W‖� → 0 that knp

′
n,ε → 0, as desired.

7. Hölder-continuous graphons. In this section, we discuss the least
squares and the least cut norm algorithms for the case of Hölder-continuous
graphons. As discussed in the introduction, our approach allows us to reduce

this to the analysis of the two error terms tail
(p)
ρ (W ) and ε

(p)
≥κ(W ) for p = 2

and p = 1, respectively, which reduces the analysis to pure approximation
theory.
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Throughout this section, we consider graphons W over Rd (equipped with
the standard Borel σ-algebra and some probability measure π) that are α-
Hölder-continuous for some α ∈ (0, 1], i.e., graphons W for which there
exists a constant C such that

|W (x, y)−W (x′, y)| ≤ C|x− x′|α∞ for all x, x′, y ∈ Rd,

with | · |∞ denoting the L∞ distance on Rd (note that we only require this
for one of the two coordinates of W , since for the other one it follows from
the fact that W is symmetric). We denote the set of graphons obeying this
bound by HC,α. If we restrict ourselves to graphons on a subset Λ of Rd, we
use the notation HC,α(Λ).

Our first proposition concerns the case when the support of the under-
lying measure π is compact, in which case we may assume without loss of
generality that π is a measure on ΛR = [−R,R]d for some R ∈ [0,∞). Note
that many examples of W -random graphs considered in the statistics and
machine learning literature fit into this setting, e.g., the mixed membership
block model of [4]. Note also that while these models can be mapped onto
W -random graphs over [0, 1] with the uniform distribution by a measure-
preserving map, such a map will typically not do this in a continuous way.
So if one wants to use continuity properties of the generating graphon W ,
one has to analyze it on the original space on which it was defined, not on
[0, 1].

Proposition 7.1. Let d ≥ 1, R ∈ [0,∞), α ∈ (0, 1], and C < ∞, let π
be a probability measure on ΛR ⊆ Rd, and let W be a normalized graphon
in HC,α(ΛR). Then there exists a constant D depending only on R, C, and
α such that the following hold:

(i) We have ‖W‖∞ ≤ D. So in particular

tail(p)ρ (W ) = 0 if ρ ≤ 1

D
.

(ii) For p ≥ 1 and κ > 0,

(7.1) ε
(p)
≥κ(W ) ≤ 4Dκα

′
,

where α′ = α
pα+d . If π is the uniform measure, then the bound (7.1) holds

for α′ = α/d.

This proposition is proved in Appendix F. It generalizes Proposition 2.1
from [37], which is the case when d = 1 and π is the uniform measure.



ESTIMATION FOR HEAVY-TAILED SPARSE GRAPHS 33

(However, we do not obtain tight bounds on convergence here, because The-
orem 2.1 is not tight.)

In many applications, the underlying measure on the latent position space
Ω does not have compact support. Gaussians are a noteworthy case, as are
distributions with heavier tails (such as Student distributions). Another rea-
son to consider measures without compact support comes from the desire
to model graphs with power-law degree distributions. As discussed already
in Section 1.2, bounded graphons do not allow for power-law degree dis-
tributions, showing in particular that Hölder-continuous graphons over Rd
equipped with a measure with compact support do not lead to graphs that
exhibit power-law degree distributions. For measures with non-compact sup-
port, this reasoning no longer applies, and as shown in Appendix G, there
are indeed Hölder-continuous graphons over Rd that generate graphs with
power-law degree distributions. For all these reasons, we aim for a general-
ization of Proposition 7.1 to measures whose supports are not necessarily
compact.

Since we want graphons to be integrable (in fact, for the least squares
algorithm to be consistent, we need them to be square integrable) we will
restrict ourselves to probability distributions π over Rd in

Mβ =
{
π
∣∣∣ ∫

Rd
|x|β∞ dπ(x) <∞

}
,

where β > 0 is a parameter which we will choose to be at least α (or at least
2α when we want to guarantee that the graphons in HC,α are in L2).

Proposition 7.2. Let d ≥ 1 and β ≥ α > 0, let π ∈ Mβ, and let
W be an α-Hölder-continuous graphon over Rd equipped with the probability
distribution π, normalized in such a way that ‖W‖1 = 1. If 1 ≤ p < β/α
and κ ≤ 1/2, then

ε
(p)
≥κ(W ) = O

(
κα
′)

and tail(p)ρ (W ) = O
(
ρβ
′)
,

where β′ = β
pα − 1 and α′ = α

pα+d
β′

1+β′ , and the constants implicit in the
big-O symbols depend on the distribution π and the constants α, β, p, and
C.

This proposition is also proved in Appendix F.
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