
Submitted to the Annals of Statistics

SUPPLEMENT TO “CONSISTENT NONPARAMETRIC
ESTIMATION FOR HEAVY-TAILED SPARSE GRAPHS”

By Christian Borgs�, Jennifer T. Chayes�, Henry
Cohn�, and Shirshendu Ganguly*,�

University of California, Berkeley� and Microsoft Research�

CONTENTS

A Couplings, metrics, and equivalence . . . . . . . . . . . . . . . . . 1
B Estimating degree distributions . . . . . . . . . . . . . . . . . . . . 8
C Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
D Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
E Proofs of Theorems 5.1 and 2.2 . . . . . . . . . . . . . . . . . . . . 24
F Proofs of Propositions 7.1 and 7.2 . . . . . . . . . . . . . . . . . . 26
G Power-law graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
H Concentration bounds . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

APPENDIX A: COUPLINGS, METRICS, AND EQUIVALENCE

In this appendix, we expand on the material presented in Section 3.4,
establishing in particular the theorems stated there. We also show that for
graphons over Borel spaces, the infima in the definitions (1.1) and (3.3) of
the distances δp and δ� are attained for some couplings ν, and that under
the additional assumption that the underlying spaces are atomless, we have
the alternative representations (3.4) for these metrics. See Lemma A.7 below
for the precise statement.

We start by the following definition, whose first part just restates the
definition of equivalence used in Theorem 1.1.

Definition A.1. Let W , W ′ be graphons over (Ω,F , π) and (Ω′,F ′, π′),
respectively. We call W and W ′ equivalent if there exist measure-preserving
maps φ and φ′ from (Ω,F , π) and (Ω′,F ′, π′) to a third probability space
(Ω′′,F ′′, π′′) and a graphon U on (Ω′′,F ′′, π′′) such that W = Uφ and W ′ =
Uφ
′

almost everywhere. We call W and W ′ isomorphic modulo 0 if there
exists a map φ : Ω → Ω′ such that φ is an isomorphism aside from sets of
measure zero and W = (W ′)φ almost everywhere.

*Supported by an internship at Microsoft Research New England.
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Remark A.2. Our notion of equivalence is closely related to the notion
of “weak isomorphism” from [3], the only difference being that in [3] the
maps φ and φ′ were required to be measure preserving with respect to the
completions of the spaces (Ω,F , π) and (Ω′,F ′, π′). We will not use the term
weak isomorphism since we want to avoid the impression that it implies that
the underlying probability spaces are isomorphic after removing suitable sets
of measure zero. It does not; see Example A.3 for a counterexample.

Example A.3 also shows that for two graphons to be equivalent we in gen-
eral do need two maps φ and φ′; i.e., it shows that in general, two equivalent
graphons cannot be obtained from each other by a single pullback.

Example A.3. Let Ω = [4] and Ω′ = [6], both equipped with the uniform
distribution. Define W and W ′ to be 0 if both arguments are even or both
arguments are odd, and set both of them to 1 otherwise. It is easy to see
that they are equivalent: indeed, let Ω′′ = {1, 2} and define φ : [4] → [2]
and ψ : [6] → [2] by mapping even elements to 2 and odd elements to 1.
Setting U to 1 if its two arguments are different and to 0 otherwise, we see
that W = Uφ and W ′ = Uψ. This shows that in general, we cannot restrict
ourselves to a single, measure-preserving map φ : Ω → Ω′, since there is
simply no measure-preserving map between Ω and Ω′.

But even if both probability spaces are [0, 1] equipped with the uniform
measure (in which case there are many measure-preserving maps between
the two), we can in general not find a measure-preserving map such that
W ′ = W φ or the other way around. To see this, let φk(x) = kx mod 1, define

W1(x, y) = xy, and let Wk = W φk
1 . Then there is no measure-preserving

transformation φ : [0, 1] → [0, 1] such that W φ
2 = W3 or W φ

3 = W2; see
Example 8.2 in [7] for the proof.

There is however, a special case where it is possible to just use a single
map, namely the case where W and W ′ are twin-free Borel graphons. Here
a graphon is called a Borel graphon if the underlying probability space is a
Borel space, i.e., a space that is isomorphic to a Borel subset of a complete
separable metric space equipped with an arbitrary probability measure with
respect to the Borel σ-algebra. A graphon W is called twin-free if the set of
twins of W has measure zero, where a twin is a point x in the underlying
probability space for which there is another point y such that W (x, ·) is
equal to W (y, ·) almost everywhere. Note that in Example A.3 above, the
graphons U and W1 are twin-free, while W , W ′, and Wk for k ≥ 2 are not.
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Theorem A.4. Let W and W ′ be twin-free Borel graphons. Then W
and W ′ are equivalent if and only if they are isomorphic modulo 0.

The theorem can easily be deduced from the results of [3], and is proved
below.

The next theorem is an extension of Theorem 3.5. To state it, we define a
standard Borel graphon to be a graphon over a probability space that is the
disjoint union of an interval [0, p] equipped with the uniform distribution
and the usual Borel σ-algebra, plus a countable number of isolated points
{xj}j∈J with nonzero mass pj for each of them, allowing for the special cases
where either the set of atoms or the interval [0, p] is absent. The former is
the case of graphons over [0, 1], while the latter is the case of block models
over [k] equipped with a probability measure in ∆k.

Theorem A.5. Let W be a graphon over an arbitrary probability space
(Ω,F , π).

(i) There exists an equivalent graphon over [0, 1] equipped with the uniform
distribution.

(ii) There exists a twin-free standard Borel graphon U and a measure-
preserving map φ from (Ω,F , π) to the space on which U is defined such
that W = Uφ almost everywhere, showing in particular that W is equivalent
to a twin-free standard Borel graphon.

Remark A.6. The above theorem states that for any graphon W , we
can find both an equivalent graphon U over [0, 1] and an equivalent twin-free
standard Borel graphon Ũ . But in general, it is not possible to find a single
equivalent graphon U which is both twin-free and a graphon over [0, 1], as
the example of a block model shows, since any representation of it over [0, 1]
has uncountably many twins.

Next, we give a precise formulation of Remark 3.1(i).

Lemma A.7. Let p ≥ 1 and let W and W ′ be Lp graphons over two Borel
spaces (Ω,F , π) and (Ω′,F ′, π′). Then the following hold:

(i) The infima in (1.1) and (3.3) are attained for some couplings ν.
(ii) If (Ω,F , π) and (Ω′,F ′, π′) are atomless, then the distances δp(W,W

′)
and δ�(W,W ′) can be expressed as

δp(W,W
′) = inf

φ
‖W − (W ′)φ‖p = inf

Φ
‖W − (W ′)Φ‖p

and
δ�(W,W ′) = inf

φ
‖W − (W ′)φ‖� = inf

Φ
‖W − (W ′)Φ‖�,
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where the infima over φ are over measure-preserving maps from Ω to Ω′ and
the infima over Φ are over isomorphisms from Ω to Ω′.

For the cut metric, the first statement is a special case of Theorem 6.16
in [7] (see also Lemma 2.6 in [1], which proves the statement for bounded
graphons over [0, 1]), while the second is essentially given in Lemma 3.5 in
[4]. Specifically, while Lemma 3.5 in [4] was only stated for bounded graphons
over [0, 1], the generalization to unbounded graphons over an atomless Borel
space is straightforward. The proofs for the distance δp are virtually identi-
cal. For the convenience of the reader, we sketch them below.

Note that the first statement does not hold without the assumption that
(Ω,F , π) and (Ω′,F ′, π′) are Borel spaces; see, for example, Example 8.13
in [7] for a counterexample. Similarly, the assumption that (Ω,F , π) and
(Ω′,F ′, π′) are atomless is needed for the second statement to hold; see
Remark 6.10 in [7]. (Indeed, the condition involving Φ does not even make
sense unless Ω and Ω′ are isomorphic, but all atomless Borel spaces are
isomorphic by Theorem A.7 in [7]. For arbitrary probability spaces there
may not even be any measure-preserving maps from Ω to Ω′.)

Proof. We begin with part (i). For the cut metric, this is a special case
of Theorem 6.16 in [7]. The proof for the metric δp is very similar. For
the convenience of the reader, we give the proof below, combining proof
techniques from [7] and [1].

Let M be the set of all probability measures on Ω × Ω′ for which the
marginals are π and π′. We first observe that M is compact in the weak*
topology. To see why, first note that by Theorem A.4(iv) in [7], the mea-
surable spaces (Ω,F) and (Ω′,F ′) are either countable (with all subsets
measurable) or isomorphic to [0, 1] with the Borel σ-algebra. Let A0 be the
set of all A ⊆ Ω× Ω′ that are products of intervals with rational endpoints
in the [0, 1] case and finite sets in the countable case. Since A0 is count-
able, any sequence of measures νn ∈ M has a subsequence ν ′n such that
ν ′n(A) converges for all A ∈ A0. Since A0 generates the product σ-algebra
on Ω×Ω′, the limit can be extended to a probability measure µ on Ω×Ω′,
which can easily be checked to have π and π′ as marginals, implying that
µ ∈M.

Consider a sequence of couplings νn such that

δp(W,W
′) =

lim
n→∞

(∫ ∣∣∣W (x, y)−W ′(x′, y′)
∣∣∣p dνn(x, x′) dνn(y, y′)

)1/p

.
(A.1)
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By the compactness of M, we may pass to a subsequence (which we again
denote by νn) for which there is a limit ν ∈M such that νn(A)→ ν(A) for
all A ∈ A0. Since ν ∈M,

δp(W,W
′) ≤

(∫ ∣∣∣W (x, y)−W ′(x′, y′)
∣∣∣p dν(x, x′) dν(y, y′)

)1/p

.

To prove a matching lower bound we fix ε > 0 to be sent to zero later.
By (A.1), we can find an n0 such that

δp(W,W
′) ≥

(∫ ∣∣∣W (x, y)−W ′(x′, y′)
∣∣∣p dνn(x, x′) dνn(y, y′)

)1/p

− ε.

for all n ≥ n0. Since W ∈ Lp, we can find an M such that ‖W1W≥M‖p ≤ ε,
and sinceW1W<M is bounded, we can find a graphon W̃ which is a finite sum
of the form W̃ =

∑
i,j βij1Ai×Aj with Ai ∈ A0 such that ‖W1W<M −W̃‖p ≤

ε, implying in particular ‖W − W̃‖p ≤ 2ε. In a similar way, we can find W̃ ′

of the form W̃ ′ =
∑

k,` β
′
k`1Bk×B` with Bi ∈ A0 and ‖W ′ − W̃ ′‖p ≤ 2ε. As

a consequence

δp(W,W
′) ≥

(∫ ∣∣∣W̃ (x, y)− W̃ ′(x′, y′)
∣∣∣p dνn(x, x′) dνn(y, y′)

)1/p

− 5ε

=

∑
i,j,k,`

|βij − β′k`|pνn(Ai ×Bk) νn(Aj ×B`)

1/p

− 5ε

for all n ≥ n0. We can take the limit as n→∞ on the right side, to obtain
the bound

δp(W,W
′) ≥

∑
i,j,k,`

|βij − β′k`|pν(Ai ×Bk) ν(Aj ×B`)

1/p

− 5ε

=

(∫ ∣∣∣W̃ (x, y)− W̃ ′(x′, y′)
∣∣∣p dν(x, x′) dν(y, y′)

)1/p

− 5ε

≥
(∫ ∣∣∣W (x, y)−W ′(x′, y′)

∣∣∣p dν(x, x′) dν(y, y′)

)1/p

− 9ε.

Since ε was arbitrary, this proves part (i) of the lemma.
We now turn to part (ii). All atomless Borel spaces are isomorphic to [0, 1]

(with the Borel σ-algebra and uniform distribution), by Theorem A.7 in [7].
Thus, we can assume without loss of generality that Ω and Ω′ are both [0, 1].
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Choosing z uniformly at random from [0, 1], the map z 7→ (z, φ(z))
provides a coupling showing that δp(W,W

′) ≤ infφ ‖W − (W ′)φ‖p and
δ�(W,W ′) ≤ infφ ‖W−(W ′)φ‖�. It is also obvious that infφ ‖W−(W ′)φ‖p ≤
infΦ ‖W − (W ′)Φ‖p and infφ ‖W − (W ′)φ‖� ≤ infΦ ‖W − (W ′)Φ‖�.

To prove equality, one first approximates W and W ′ by piecewise constant
functions (more precisely, graphons on [n] equipped with the uniform mea-
sure), and then approximates an arbitrary coupling of two uniform measures
on [n] by a bijection on a “blow-up” [nk] of [n]. Mapping this bijection back
to an isomorphism Φ: [0, 1]→ [0, 1] then gives a lower bound on δp(W,W

′)
in terms of infΦ ‖WΦ −W ′‖p, minus some error which can be taken to be
arbitrarily small. The details are very similar to the proof of Lemma 3.5 in
[4], which proves equality for the cut norm when W and W ′ are bounded,
and we leave them to the reader. Note that the generalization to unbounded
graphons is straightforward, given that ‖W1W≥M‖p → 0 as M → ∞ and
‖W1W≥M‖� ≤ ‖W1W≥M‖1.

In the remainder of this appendix, we prove Theorem 3.6 from Section 3.4,
as well as Theorem A.4 and Theorem A.5 (which encompasses Theorem 3.5).
We rely heavily on both the results and the techniques of [3] and [7]; see also
[1]. Before turning to these proofs, we relate the notion of equivalence from
Definition A.1 to the notion of “weak isomorphism” from [3], which requires
the maps φ and φ′ to be measure preserving with respect to the completion of
the spaces (Ω,F , π) and (Ω′,F ′, π′). It is clear that equivalence implies weak
isomorphism, since maps that are measurable with respect to (Ω,F , π) and
(Ω′,F ′, π′) are clearly measurable with respect to their completions. We can
also turn this around, at least when the third space is a Lebesgue space, i.e.,
the completion of a Borel space. This follows from part (i) of the following
technical lemma.

Lemma A.8. Let W and W ′ be graphons over two probability spaces
(Ω,F , π) and (Ω′,F ′, π′), respectively.

(i) Assume that there exist measure-preserving maps φ and φ′ from the
completions of (Ω,F , π) and (Ω′,F ′, π′) to a Lebesgue space (Ω′′,F ′′, π′′)
and a graphon U over (Ω′′,F ′′, π′′) such that W = Uφ and W ′ = Uφ

′
almost

everywhere. Then there exists a standard Borel graphon Ũ and measure-
preserving maps φ̃ and φ̃′ from (Ω,F , π) and (Ω′,F ′, π′) to the Borel space

on which Ũ is defined such that W = Ũ φ̃ and W ′ = Ũ φ̃
′

almost everywhere.
If U is twin-free, then Ũ can be chosen to be twin-free as well.

(ii) If (Ω,F , π) and (Ω′,F ′, π′) are Borel spaces and W and W ′ are
isomorphic modulo 0 when considered as graphons over the completion of
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(Ω,F , π) and (Ω′,F ′, π′), then they are also isomorphic modulo 0 as graphons
over (Ω,F , π) and (Ω′,F ′, π′).

Proof. (i) Since every Lebesgue space is isomorphic modulo 0 to the
union of an interval [0, p] and a collection of atoms xi (see Theorem A.10
in [7]), we may without loss of generality assume that (Ω′′,F ′′, π′′) is of this
form. Assume without loss of generality that the atoms are represented as
points xi ∈ (p, 1], so that φ takes values in [0, 1]. Noting that F ′′ is the
completion of a Borel σ-algebra B′′, define Ũ as the conditional expecta-
tion E[U | B′′ × B′′]. Then Ũ is a Borel graphon such that U = Ũ almost
everywhere. Since φ is measure preserving from the completion (Ω, F̄ , π)
of (Ω,F , π) to (Ω′′,F ′′, π′′), it is also measure preserving from (Ω, F̄ , π) to
(Ω′′,B′′, π′′). Replacing φ by the conditional expectation φ̃ = E[φ | F ], we
obtain a measure-preserving map φ̃ from (Ω,F , π) to (Ω′′,B′′, π′′) such that

W = Ũ φ̃ almost everywhere. If U is twin-free, then so is Ũ .
(ii) The completions of (Ω,F , π) and (Ω′,F ′, π′) are Lebesgue spaces.

Since every Lebesgue space is isomorphic modulo 0 to the disjoint union of
an interval [0, p] (equipped with the Lebesgue σ-algebra and the uniform
measure) and countably many atoms xi, we have that as graphons over
the completion of (Ω,F , π) and (Ω′,F ′, π′), both W and W ′ are isomorphic
modulo 0 to a graphon U over such a space. Proceeding as in the proof of
(i), we can then replace U by a Borel graphon Ũ such that W and W ′ are
isomorphic modulo 0 to the graphon Ũ , which in particular implies that W
and W ′ are isomorphic modulo 0.

Proof of Theorem A.4. If W and W ′ are isomorphic modulo 0, they
are clearly equivalent. Assume on the other hand that W and W ′ are equiv-
alent. Moving from (Ω,F , π) and (Ω′,F ′, π′) to their completion, we obtain
graphons which are defined on a Lebesgue space and are weakly isomorphic
in the sense of [3]. For bounded graphons, we can then use Theorem 2.1
of [3] to conclude that W and W ′ are isomorphic modulo 0 as graphons
over the completion of (Ω,F , π) and (Ω′,F ′, π′). By Lemma A.8, this im-
plies that they are also isomorphic modulo 0 as graphons over (Ω,F , π) and
(Ω′,F ′, π′).

If W and W ′ are unbounded, let W̃ = tanhW and W̃ ′ = tanhW ′. Clearly,
W and W ′ are equivalent if and only if W̃ and W̃ ′ are equivalent, and W
and W ′ are isomorphic modulo 0 if and only if W̃ and W̃ ′ are isomorphic
modulo 0. Therefore the unbounded case follows from the bounded case.

Proof of Theorem A.5. For bounded graphons, the analogous state-
ment for graphons over a Lebesgue space was proved in [3]; in particu-
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lar, by Corollary 3.3 from [3], we can find a twin-free graphon U over a
Lebesgue space (Ω′,F ′, π′) and a measure-preserving map φ from the com-
pletion of (Ω,F , π) to (Ω′,F ′, π′) such that W = Uφ almost everywhere. By
Lemma A.8, this implies the existence of a twin-free standard Borel graphon
Ũ on a Borel space (Ω̃, F̃ , π̃) and a measure-preserving map from (Ω,F , π)

to (Ω̃, F̃ , π̃) such that W = Ũ φ̃ almost everywhere, which proves (ii) for
bounded graphons. Statement (i) follows from (ii) by expanding the atoms
xi in Ω̃ into intervals of widths pi = π̃(xi).

To reduce the case of unbounded graphons to the case of bounded graphons,
we again use the transformationW 7→ tanhW , which maps arbitrary graphons
to bounded graphons.

Proof of Theorem 3.6. We first note that the implications (iii) ⇒
(ii) ⇒ (i) are trivial. So all that remains to prove is that (i) ⇒ (iii), and by
Theorem 3.5, it will be enough to prove this for graphons W and W ′ over
[0, 1] equipped with the uniform distribution.

Assume thus that W and W ′ are graphons over [0, 1] with δ�(W,W ′) = 0.
By Lemma A.7 this implies that W and W ′ can be coupled in such a way
that ‖W−W ′‖� = 0, which in turn implies that W (x, y) = W ′(x′, y′) almost
surely with respect to this coupling. As a consequence, δ�(tanhW, tanhW ′) =
0. By the results of [3], this implies that tanhW and tanhW ′ are equivalent,
which in turn shows that W and W ′ are equivalent, as required.

APPENDIX B: ESTIMATING DEGREE DISTRIBUTIONS

In this appendix, we show that a good approximation of a graphon in
the cut metric implies a good approximation for its degree distribution. We
define the normalized degree of a vertex x ∈ V (G) as dx/d̄, where dx is its
degree and d̄ = 1

|V (G)|
∑

x∈V (G) dx is the average degree. The normalized de-
gree distribution of G is the empirical distribution of the normalized degrees,
with cumulative distribution function

DG(λ) =
1

|V (G)|
∑

x∈V (G)

1dx≤λd̄.

In a similar way, we define the degrees of a normalized graphon W : Ω×Ω→
[0,∞) as the random variable

Wx =

∫
Ω
W (x, y) dπ(y),

where x is chosen according to the probability measure π on Ω. This random
variable has cumulative distribution function

DW (λ) = π({x : Wx ≤ λ}).
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Recalling that convergence in distribution can be formulated as convergence
in the Lévy-Prokhorov distance, we say that the normalized degree distri-
butions of a sequence Gn of graphs converge to the degree distribution of
W if dLP(DGn , DW )→ 0, where as usual, the Lévy-Prokhorov distance dLP

between two distribution functions D and D′ is defined by

dLP(D,D′) = inf{ε > 0 : D′(λ−ε)−ε ≤ D(λ) ≤ D′(λ+ε)+ε for all λ ∈ R}.

Our next theorem implies that convergence in the cut metric implies conver-
gence of the normalized degree distributions. Combined with Theorem 3.10,
this shows that a.s., the normalized degree distributions of a sequence of W -
random graphs converge to the degree distribution of W as long as nρn →∞
and ρn → 0. Indeed, observing that for any graph G, the normalized degree
distribution DG is equal to the degree distribution of 1

‖A(G)‖1A(G) consid-

ered as a graphon over V (G) equipped with the uniform distribution, both
statements follow immediately from the following theorem.

Theorem B.1. Let U and W be two normalized graphons. Then

dLP(DU , DW ) ≤
√

2δ�(U,W ).

The proof of Theorem B.1 will make use of the following lemma.

Lemma B.2. Let U and W be two normalized graphons over the same
probability space Ω. If x is chosen at random from Ω, then

Pr(|Wx − Ux| ≥ ε) ≤
2

ε
‖U −W‖�.

Proof. We have

Pr(|Wx − Ux| ≥ ε) ≤
1

ε
E[|Wx − Ux|]

=
1

ε
E[(Wx − Ux)1Wx≥Ux ] +

1

ε
E[(Ux −Wx)1Wx≤Ux ].

Defining S as the set of points x ∈ Ω such that Wx ≥ Ux and S̃ as the set
of points x ∈ Ω such that Wx ≤ Ux, we write the right side as

1

ε

∫
[0,1]×S

(W − U) +
1

ε

∫
[0,1]×S̃

(U −W ) ≤ 2

ε
‖U −W‖�,

as desired.
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Proof of Theorem B.1. To prove the theorem, we will prove that for
two arbitrary graphons and all λ ∈ R and ε > 0,

(B.1) DW (λ) ≤ DU (λ+ ε) + 2
δ�(U,W )

ε
.

Because the degree distributions of equivalent graphons are identical, it will
be enough to prove (B.1) for two graphons over [0, 1], with an upper bound
of ‖U −W‖� instead of δ�(U,W ).

To this end, we estimate the probability that Ux and Wx differ by at least
ε by Lemma B.2. As a consequence,

DW (λ) = Pr[Wx ≤ λ]

≤ Pr[Ux ≤ λ+ ε] + Pr[|Ux −Wx| ≥ ε]

≤ DU (λ+ ε) +
2

ε
‖U −W‖�,

which proves (B.1) and hence the theorem.

APPENDIX C: AUXILIARY RESULTS

In this appendix, we prove several auxiliary results needed for various
proofs in this paper.

C.1. Existence of approximating block models. Our first set of
results concern the approximation of an arbitrary graphon by a stochastic
block model. Recall the definition of B≥κ as the set of all block models with
minimal block size at least κ,

B≥κ = {(p, B) ∈ B : min
i
pi ≥ κ}.

For an arbitrary probability space (Ω,F , µ) and integrable function U : Ω×
Ω→ R, we define Hn(U) to be the n× n matrix with entries

(C.1) (Hn(U))ij = U(xi, xj) for i 6= j

and (Hn(U))ii = 0; in contrast to the definitions of Gn(W ) and Qn(W ),
which we will only use for graphons, the latter notation will be used even if
U takes values in R, rather than in [0,∞).

Lemma C.1. Let 1 ≤ p < ∞, let W be an Lp graphon, and let ε
(p)
≥κ(W )

be as in (2.1). Then the infimum in (2.1) is achieved for some W ′ ∈ B≥κ
that has norm ‖W ′‖p ≤ 2‖W‖p. Furthermore, ε

(p)
≥κ(W )→ 0 as κ→ 0.
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Proof. We clearly have ε
(p)
≥κ(W ) = infW ′ δp(W,W

′) ≤ ‖W‖p, so by
the triangle inequality, we only need to consider block models W ′ with
‖W ′‖p ≤ 2‖W‖p. Again by the triangle inequality, the distance δp(W,W

′) is
continuous in W ′, which implies that the infimum is actually a minimum.

To see that ε
(p)
≥κ(W ) → 0 as κ → 0, we first replace W by an equivalent

graphon U over [0, 1], and then use the approximation Un to U given by
averaging over the partition consisting of consecutive intervals of length
1/n. This approximation is a block model with minimal block size 1/n, and
it is not hard to prove that it converges to U . (For example, because con-
tinuous functions are dense in Lp, we can approximate U with a continuous
function. Then convergence follows from uniform continuity and the fact
that averaging over a partition is a contraction in Lp.)

When applying the lemma, we will sometimes be constrained to use only
block models whose block sizes are all a multiple of 1/n, i.e., block models
in

B≥κ,n = {(p, B) ∈ B : for all i, pin ∈ Z and pin ≥ bnκc}.

Note that B≥κ,n naturally corresponds to the set An,≥κ of n× n block ma-
trices A such that each block in A has size at least bnκc, via

(C.2) {W[A] : A ∈ An,≥κ} = {W[p, B] : (p, B) ∈ B≥κ,n}.

Our next lemma shows that every block model in B≥κ can be well approxi-

mated by a block model in B≥κ,n, and it also shows that ε
(p)
≥κ can be bounded

from above in terms of a minimum over B≥κ,n.

Lemma C.2. Let κ ∈ (0, 1]. Then there exists a constant n0(κ) such that
for all p ≥ 1, the following holds:

If W ′ ∈ B≥κ is a block model on [k], then the labels in [k] can be reordered
in such a way that for each n ≥ 1/κ there exists a block model W ′′ ∈ An,≥κ
with

δ̂p(W
′′,W[W ′]) ≤ 2

p

√
2

κn
‖W ′‖p

(recall that δ̂p is defined in (3.1)). For all Lp graphons W , if n ≥ n0(κ),
then

ε
(p)
≥κ(W ) ≤ min

W ′′∈B≥κ,n
δp(W

′′,W ) + 4
p

√
2

κ2n
‖W‖p.

The proof of the lemma relies on two other lemmas, the first of which is
an easy consequence of the law of large numbers for U -statistics.
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Lemma C.3. Let (Ω,F , π) be a probability space, and let W : Ω×Ω→ R
be in Lp for some p ≥ 1. Then ‖Hn(W )‖p → ‖W‖p a.s.

Proof. Define U = |W |p, and choose x1, . . . , xn i.i.d. with distribution
π. Then

‖Hn(W )‖pp =
1

n2

∑
i 6=j
|W (xi, xj)|p =

1

n2

∑
i 6=j

U(xi, xj).

By the strong law of large numbers for U -statistics (see, for example, [6]),
the right side converges to ‖U‖1 = ‖W‖pp as claimed.

Next we state the second lemma needed to prove Lemma C.2. We use λ to
denote the Lebesgue measure on [0, 1] or [0, 1]2 (depending on the context),
and, as usual, we use A4B to denote the symmetric difference of two sets
A,B, i.e., A4B = (A \B) ∪ (B \A).

Lemma C.4. Let W and W ′ be of the form W =
∑

i,j Bij1Yi×Yj and
W ′ =

∑
i,j Bij1Y ′i×Y ′j , where B is a k × k matrix, and (Y1, . . . , Yk) and

(Y ′1 , . . . , Y
′
k) are partitions of [0, 1]. If λ(Yi 4 Y ′i ) ≤ ελ(Yi) for all i, then

‖W −W ′‖p ≤ 2 p
√
ε(1 + ε)‖W‖p.

Proof. We begin by writing

W −W ′ =
∑
i,j

Bij(1Yi×Yj − 1Y ′i×Y ′j )

=
∑
i,j

Bij(1(Yi×Yj)\(Y ′i×Y ′j ) − 1(Y ′i×Y ′j )\(Yi×Yj)).

Each point of [0, 1]2 is in at most two of the sets (Yi × Yj) \ (Y ′i × Y ′j )
and (Y ′i × Y ′j ) \ (Yi × Yj), namely one of each of these two types, and we

can therefore apply the inequality |
∑

` x`|p ≤ 2p−1
∑

` |x`|p, which holds by
Hölder’s inequality whenever at most two of the summands x` are nonzero.
Thus,

‖W −W ′‖pp ≤ 2p−1
∑
i,j

|Bij |pλ
(
(Yi × Yj)4 (Y ′i × Y ′j )

)
.

We have

(Yi × Yj)4 (Y ′i × Y ′j ) ⊆
(
(Yi ∪ Y ′i )× (Yj 4 Y ′j )

)
∪
(
(Yi 4 Y ′i )× (Yj ∪ Y ′j )

)
.
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Combining this containment with λ(Yi 4 Y ′i ) ≤ ελ(Yi) and λ(Yi ∪ Y ′i ) ≤
(1 + ε)λ(Yi) yields

‖W −W ′‖pp ≤ 2pε(1 + ε)
∑
i,j

|Bij |pλ(Yi × Yj) = 2pε(1 + ε)‖W‖pp,

as desired.

Remark C.5. A slight variation of the above proof also shows that

‖W −W ′‖p ≤ max
i

2

λ(Yi)2/p
‖W‖p,

no matter how large the measure of the symmetric differences Yi4Y ′i is. To
see this, just bound

‖W −W ′‖pp ≤ 2p−1
∑
i,j

|Bij |p
(
λ(Yi × Yj) + λ(Y ′i × Y ′j )

)
≤ 2p‖W‖pp max

i

(
λ(Y ′i )

λ(Yi)

)2

≤ 2p‖W‖pp max
i

1

λ(Yi)2
.

Proof of Lemma C.2. If κ = 1, B≥κ,n(W ) = B≥κ(W ) and there is
nothing to prove. We may therefore assume without loss of generality that
κ ∈ (0, 1).

To prove the first bound, we write W ′ as (p, B) and reorder the elements
of [k] so that p1 ≤ p2 ≤ · · · ≤ pk. Also, without loss of generality, we may
remove all labels with pi = 0, so that pi ≥ κ for all i. Define W ′′ = (p′′, B),
where p′′ is obtained from p so that for each i, p′′1 +· · ·+p′′i equals p1+· · ·+pi
rounded to the nearest multiple of 1/n (with the convention that in the
case of ties, we choose the point to the left). After embedding both W ′

and W ′′ into the space of graphons on [0, 1], we can write the resulting

graphons W̃ ′′ = W[W ′′] and W̃ ′ = W[W ′] in the form W̃ ′′ =
∑

i,j Bij1Y ′′i ×Y ′′j
and W̃ ′ =

∑
i,j Bij1Yi×Yj , where Yi and Y ′′i are intervals whose endpoints

differ by at most 1/(2n). As a consequence λ(Yi 4 Y ′′i ) ≤ 1
n ≤

1
κnλ(Yi). By

Lemma C.4 and the fact that 1
κn ≤ 1, this implies that

(C.3) ‖W[W ′]−W[W ′′]‖pp ≤
2p+1

κn
‖W ′‖pp.

To complete the proof of the first bound, all we need to show is that W ′′ ∈
B≥κ,n, which means we need to show that np′′i = nλ(Y ′′i ) ≥ bκnc for all i.
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Let i0 be the first i such that npi is not an integer. For i < i0, we then
have np′′i = npi ≥ κn ≥ bκnc. On the other hand, for i ≥ i0, we can use
|npi−np′′i | ≤ 1, which follows from |n(p1 + · · ·+pi)−n(p′′1 + · · ·+p′′i )| ≤ 1/2.
We then conclude that np′′i ≥ npi − 1 ≥ npi0 − 1 > bnpi0c − 1 ≥ bκnc − 1,
where we used that npi0 is not an integer. Since np′′i is an integer, this
implies np′′i ≥ bnκc, which shows that W ′′ ∈ B≥κ,n. Identifying W ′′ with the
corresponding matrix in An,≥κ, this proves the first bound.

To prove the second bound we first observe that the minimizer W ′′ =
(p′′, B) ∈ B≥κ,n obeys the bound ‖W ′′‖p ≤ 2‖W‖p. Our task is now to find
a block model W ′ ∈ B≥κ that approximates W ′′ in the norm δp. Let k′′ be
the number of classes in W ′′; again, we assume without loss of generality
that they are all non-empty, which means we have that p′′i ≥ κn for all
i ∈ [k′′], where κn := 1

nbnκc.
We would like to increase p′′i to κ whenever it is smaller than that, while

compensating for this by decreasing those probabilities that are larger than
κ. However, there is a potential obstruction, namely that k′′κ could be
greater than 1, in which case it is clearly impossible to increase all k′′ prob-
abilities to at least κ. For comparison, we know that k′′κn ≤ 1, but that is
a slightly weaker assertion.

To deal with this difficulty, we will show that there exist some n0 de-
pending on κ such that for n ≥ n0, we do have κk′′ ≤ 1. First, note that
κn > κ− 1

n . Thus,

k′′ ≤
⌊

1

κ− 1/n

⌋
.

As n→∞, 1/(κ− 1/n) approaches 1/κ from above, and thus⌊
1

κ− 1/n

⌋
=

⌊
1

κ

⌋
for all sufficiently large n. If we take n0 to be sufficiently large, then for
n ≥ n0 we have

k′′κ ≤
⌊

1

κ

⌋
κ ≤ 1.

Given this, we now define W ′ = (p, B) as follows: let I− be the set of
indices i ∈ [k′′] such that p′′i < κ, and let δ =

∑
i∈I−(κ − p′′i ). For i ∈ I−,

we then set pi = κ, while for i /∈ I− we first decrease the largest p′′i until
we either hit κ or have used up the excess δ. If we stop because we hit κ,
then we move to the next largest p′′i , etc. Since in the second step, we will
eventually use up the excess δ, this process constructs a distribution p such
that pi ≥ κ for all i ∈ [k′′], and such that

∑
i |p′′i − pi| = 2δ. Note for future

reference that δ ≤ k′′/n.
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Writing the embedding W[W ′′] of W ′′ into the set of graphons over [0, 1] as∑
i,j Bij1Y ′′i ×Y ′′j , we construct corresponding measurable sets Yi such that

Y1, . . . , Yk′′ forms a partition of [0, 1] with λ(Yi) = pi and λ(Yi 4 Y ′′i ) ≤
|pi − p′′i |. (Each set Yi will be either a superset or a subset of Y ′′i , according
to whether p′′i was increased or decreased.)

For i ∈ I−,

λ(Yi 4 Y ′′i ) ≤ |pi − p′′i | ≤
1

n
≤ 1

κnn
λ(Y ′′i ).

For i 6∈ I−,

λ(Yi 4 Y ′′i ) ≤ |pi − p′′i | ≤ δ ≤
k′′

n
≤ 1

κ2n
λ(Y ′′i ).

When n is sufficiently large, κn ≥ κ2. Increase n0 enough for this to hold,
as well as n0 ≥ 1/κ2. Then for n ≥ n0,

δp(W
′,W ′′) ≤ p

√
2p+1

κ2n
‖W ′′‖p ≤ 2

p

√
2p+1

κ2n
‖W‖p

by Lemma C.4, as in the proof of the first bound. This concludes the proof
of the second bound.

C.2. Convergence of W -weighted graphs. Recall that by Theo-
rem 3.10, the sequence Gn = Gn(ρnW ) converges to W in the cut metric
if W ∈ Lp is normalized, nρn → ∞, and ρn → 0. Our next lemma, which
is a slight strengthening of Theorem 2.14(a) from [2], states that for the
weighted graphs Qn(ρnW ), the same holds in the tighter distance δp. Re-
calling that for any graphon, we can find an equivalent graphon over [0, 1],
we will restrict ourselves to the case where W is a graphon over [0, 1], in
which case we can use an even tighter distance, the distance δ̂p defined in
(3.5).

Lemma C.6. Let p ≥ 1, let W be a normalized Lp graphon over [0, 1],
let x1, x2, . . . ∈ [0, 1] be chosen i.i.d. uniformly at random, and let ρn be a
sequence of positive numbers such that ρn → 0. Given n ≥ 2, let Qn be the
n× n matrix with entries min{1, ρnW (xi, xj)}, relabeled in such a way that
x1 < x2 < · · · < xn. Then a.s. ‖ 1

ρn
W[Qn] − W‖p → 0, so in particular

ρ(Qn)/ρn → 1 and δ̂p(
1
ρn
Qn,W )→ 0.

Proof. We first note that the statement clearly holds if W is replaced
by the block model W (k) = WPk , where Pk is the partition of [0, 1] into
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consecutive intervals of length 1/k. To see this, one just needs to use the
fact that as n→∞, the fraction of points xi which fall into the jth interval
converges a.s. to 1/k.

To prove the lemma for general W , we will use Lemma C.3. Let ρ = ρn,
fix ε > 0, choose k so that ‖W −W (k)‖p ≤ ε, and let M be large enough
that ‖W1W≥M‖p ≤ ε. Also, define Wρ = min{W, 1/ρ}. Noting that 1

ρQn =
Hn(Wρ), we then bound

‖W − 1

ρ
Qn‖p = ‖W −Hn(Wρ)‖p

≤ ‖W −W (k)‖p + ‖W (k) −Hn(W (k))‖p
+ ‖Hn(W (k))−Hn(W )‖p + ‖Hn(W )−Hn(Wρ)‖p.

Assuming n is large enough to ensure that ρ−1 ≥M (which in turn implies
that |W −Wρ| = W −Wρ ≤W1W≥M ), we then bound the right side by

ε+ ‖W (k) −Hn(W (k))‖p + ‖Hn(W (k) −W )‖p + ‖Hn(W1W≥M )‖p.

As n → ∞, the second term tends to zero with probability 1, and the
third and the fourth both converge to quantities which are at most ε by
Lemma C.3. Thus, with probability 1, the limit superior of ‖W − 1

ρQn‖p is
at most 3ε. Since ε was arbitrary, this proves the claim.

We also formulate a quantitative version of Lemma C.6 for block models.

Lemma C.7. Let C be a positive real number, let κ ∈ (0, 1), and let W ′

be a block model with minimal class size at least κ, represented as a graphon
over [0, 1]. If 1

nκ log n ≤ C, then

δ̂p(Hn(W ′),W ′) = Op

(
2p

√
log n

nκ

)
‖W ′‖p,

and if κ = κn is such that lim supn
1
κn log n < C, then with probability 1,

there exists a random n0 such that for n ≥ n0,

δ̂p(Hn(W ′),W ′) = O

(
2p

√
log n

nκ

)
‖W ′‖p.

Here the constants implicit in the big-O and Op symbols depend only on C.

To prove Lemma C.7 we prove the following adaptation of a lemma from
[5], where only bounded graphons where considered.
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Lemma C.8. Let P = (Y1, . . . , Yk) be a partition of [0, 1] into consecutive
intervals, and let W be a graphon over [0, 1] that is constant on sets of the
form Yi × Yj. If x1, . . . , xn are chosen i.i.d. uniformly at random from [0, 1]
and Hn is the n× n matrix with entries W (xi, xj), then

δ̂p(Hn,W ) ≤ 2 p
√
ε(1 + ε)‖W‖p,

where ε is the random variable

ε = max
i∈[k]

1

λ(Yi)

( 1

n
+
∣∣∣ni
n
− λ(Yi)

∣∣∣),
with ni denoting the number of points x` that lie in Yi.

Proof. Let I1, . . . , In be a partition of [0, 1] into adjacent intervals of
lengths 1/n. Then W[Hn] is of the form

∑
i,j Bij1Y ′i×Y ′j , where Y ′i is the

union of ni of the intervals I1, . . . , In (which particular ni intervals depends
on the labeling of the vertices of Hn). In fact, given a map τ : [n] → [k],
define Y ′i = Y ′i (τ) to be the union of all intervals I` such that τ(`) = i, and
let W (τ) =

∑
i,j Bij1Y ′i (τ)×Y ′j (τ). Then

δ̂2(Hn,W ) = min
τ
‖W (τ)−W‖2,

where the minimum is over all τ such that |τ−1({i})| = ni for all i. In view
of Lemma C.4, we will want to keep the Lebesgue measure of Yi4 Y ′i small
for all i. We claim that this is indeed possible, and that τ can be chosen in
such a way that

(C.4) λ(Yi 4 Y ′i ) ≤
∣∣∣ni
n
− λ(Yi)

∣∣∣+
1

n
for all i.

To prove this, we note that choosing τ is equivalent to choosing, for all i, ni
of the intervals I1, . . . , In to make up Y ′i .

Let Ỹ1, . . . , Ỹk be obtained from Y1, . . . , Yk by rounding the endpoints to
the nearest integer multiples of 1/n, choosing the multiple to the left in case
of a tie. With this convention,

bλ(Yi)nc ≤ λ(Ỹi)n ≤ dλ(Yi)ne.

Thus, if ni ≤ λ(Yi)n, then ni ≤ nλ(Ỹi), while if ni ≥ λ(Yi)n, then ni ≥
nλ(Ỹi). Keeping this in mind, we see that for ni ≤ λ(Yi)n, we can find at
least ni intervals I` that, except possibly for their endpoints, are subsets of
Ỹi. We will define Y ′i to be the union of these intervals. In a similar way,
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if ni > λ(Yi)n, we choose nλ(Ỹi) ≤ ni intervals (namely, those forming Ỹi)

to build a preliminary set Y
(0)
i . Having done this for all i, we take a second

run through all i with ni > λ(Yi)n, choosing an arbitrary set of ni − λ(Ỹi)n
intervals I` from those not yet assigned at this point. At the end of this
round, we end up with sets Y ′i such that Y ′i is the union of ni intervals from
I1, . . . , In, with the additional property that

either Y ′i ⊆ Ỹi or Ỹi ⊆ Y ′i .

But this implies that λ(Y ′i 4 Ỹi) = |nin − λ(Ỹi)| for all i. Since the endpoints

of Yi get shifted by at most 1/(2n) in order to obtain Ỹi, the additional
error in going from Ỹi to Yi is at most 1/n, proving (C.4). Combined with
Lemma C.4, this concludes the proof.

Finally, the following lemma implies Lemma C.7.

Lemma C.9. Let ε and the other notation be as in Lemma C.8, suppose
that all sizes of P have measure at least κ, and let η ∈ (0, 1). Then

ε ≤ 1

κn
+ max

{
3

nκ
log

2

κη
,

√
3

nκ
log

2

κη

}
with probability at least 1 − η. As a consequence, if C is a positive real
number, then

δ̂p(Hn,W ) = Op

(
2p

√
log n

nκ

)
‖W‖p

whenever logn
nκ ≤ C, with the constant implicit in the Op symbol depending

on C. In addition, if κ = κn is such that lim supn
1
κn log n < C, then with

probability 1, there exists a random n0 such that for n ≥ n0,

δ̂p(Hn,W ) = O

(
2p

√
log n

nκ

)
‖W‖p,

with the constant implicit in the big-O symbol again depending on C.

Proof. By the multiplicative Chernoff bound,

Pr
(∣∣∣ni
n
− λ(Yi)

∣∣∣ ≥ tλ(Yi)
)
≤ 2 exp

(
−nλ(Yi)

3
min{t, t2}

)
≤ 2 exp

(
−nκ

3
min{t, t2}

)
,
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so by the union bound and the fact that the number k of classes is at most
1/κ, we get

ε ≤ t+
1

κn
with probability at least 1− 2

κ
exp

(
−nκ

3
min{t, t2}

)
.

Setting y = 3
nκ log 2

κη we see that with probability at least 1− η, ε ≤ t+ 1
κn

whenever min{t, t2} ≥ y. This implies the bound on ε.
For the remaining part of the proof, choose η = 2n−2. Then with proba-

bility at least 1− 2n−2,

ε ≤ 1

κn
+ max

{
3

nκ
log

n2

κ
,

√
3

nκ
log

n2

κ

}

≤ 1

κn
+ max

{
9

nκ
log 2Cn,

√
9

nκ
log 2Cn

}
(because

1

nκ
≤ C

log n
≤ 2C)

≤
√
C ′′ log n

nκ
≤
√
CC ′′,

for some C ′′ depending on C. This implies

2pε(1 + ε) ≤ 2p(1 +
√
CC ′′)

√
C ′′ log n

nκ
=: C ′

√
log n

nκ

and hence

δ̂p(Hn,W ) ≤ 2p

√
C ′ log n

nκ
‖W‖p.

Since the failure probability 2n−2 is summable, this implies the a.s. state-
ment. To prove the statement in probability, we note that by Remark C.5,
δ̂p(Hn,W ) ≤ 2κ−2/p‖W‖p always. If we combine this inequality with the
previous bound (which holds with probability 1− η), we find that

E
[
(δ̂p(Hn,W ))p

]
≤

(√
C ′ log n

nκ
(1− η) +

2p

κ2
η

)
‖W‖pp

=

(√
C ′ log n

nκ
+

2p+1

κ2n2

)
‖W‖pp

= O

(√
log n

nκ

)
‖W‖pp.

This implies the Op bound for δ̂p(Hn,W ).
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C.3. Proof of Lemma 6.2.

Proof of Lemma 6.2. Without loss of generality we can assume that
W is continuous, because continuous functions are dense in L1 and ||WPn −
W ′Pn ||1 ≤ ||W −W

′||1.
Let J1, . . . , JN be the parts of Pn. Then for (x, y) ∈ Ji × Jj ,

WPn(x, y) =
1

λ(Ji)λ(Jj)

∫
Ji×Jj

W (u, v) du dv.

By combining this formula with

W (x, y) =
1

λ(Ji)λ(Jj)

∫
Ji×Jj

W (x, y) du dv,

we find that

‖WPn−W‖1 ≤
N∑

i,j=1

1

λ(Ji)λ(Jj)

∫
Ji×Jj

∫
Ji×Jj

|W (u, v)−W (x, y)| du dv dx dy.

Because W is continuous on [0, 1]2 (and hence uniformly continuous), for
each δ > 0, there exists ε > 0 such that |W (x, y) −W (u, v)| < δ whenever
|x− u| < ε and |y − v| < ε. Then

||WPn −W ||1

≤ δ +

N∑
i,j=1

2‖W‖∞
λ(Ji)λ(Jj)

∫
Ji×Jj

∫
Ji×Jj

1|x− u| ≥ ε or |y − v| ≥ ε du dv dx dy

≤ δ +
N∑

i,j=1

4‖W‖∞
λ(Ji)λ(Jj)

∫
Ji×Jj

∫
Ji×Jj

1|x− u| ≥ ε du dv dx dy

= δ + 4‖W‖∞
N∑
i=1

1

λ(Ji)

∫
Ji×Ji

1|x− u| ≥ ε du dx

= δ + 4‖W‖∞pn,ε.

It follows that
lim sup
n→∞

||WPn −W ||1 ≤ δ

for each δ > 0, as desired.
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APPENDIX D: PROOF OF THEOREM 2.1

Proof of Theorem 2.1. Let (Ω,F , π) be the space on which W is de-
fined, and let Q = Qn(ρW ) as before. Defining Wρ = min{W, 1/ρ}, we will

write Q as ρHn(Wρ) and tail
(2)
ρ (W ) = ‖W −Wρ‖2.

By the triangle inequality and the fact that the δ̂2 distance dominates the
δ2 distance, we have

δ2

(
1

ρ
Ŵ ,W

)
= δ2

(
Mn

(
1

ρ
Ŵ

)
,W

)
≤ δ̂2

(
Mn

(
1

ρ
Ŵ

)
,

1

ρ
Q

)
+ δ2

(
1

ρ
Q,W

)
.

(D.1)

To bound the first term on the right side, we will use Theorem 4.1 and then

bound ε̂
(2)
≥κ

(
1
ρQ
)

in terms of ε
(2)
≥κ(W ).

Recall that by Lemma C.1 the infimum in the definition (2.1) of ε
(2)
≥κ(W )

is a minimum, and the minimizer W ′ ∈ B≥κ satisfies ‖W ′‖2 ≤ 2‖W‖2. As
established in Lemma C.2, we can relabel the blocks of the block model W ′

in such a way that

δ̂2(W ′′,W[W ′]) ≤
√

8

κn
‖W ′‖2 ≤ 2

√
8

κn
‖W‖2 =

√
32

κn
‖W‖2

for some W ′′ ∈ An,≥κ. Setting W̃ ′ = W[W ′], we find that

ε̂
(2)
≥κ

(
1

ρ
Q

)
≤ δ̂2

(
1

ρ
Q,W ′′

)
≤ δ̂2

(
1

ρ
Q, W̃ ′

)
+

√
32

κn
‖W‖2

= δ̂2

(
Hn(Wρ), W̃

′
)

+

√
32

κn
‖W‖2.

Next we would like to choose a coupling µ of p and π such that

ε
(2)
≥κ(W ) = δ2(W ′,W ) = ‖W ′ −W‖2,µ,

where ‖·‖2,µ denotes the L2 norm with respect to the coupling µ. (This is an
abuse of notation, but it is more convenient than writing out the formula,
as in (1.1).) Such a coupling need not exist, but that is not a significant
obstacle. We could complete the proof by looking at couplings that come
arbitrarily close to the oracle error, but instead we will switch to equivalent
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graphons over [0, 1], because Lemma A.7 then guarantees the existence of
an optimal coupling. The oracle error and tail bounds are invariant under
equivalence, so we can assume without loss of generality that the coupling
µ exists.

We use this coupling to couple the random graphs Q(ρW ) and Q(ρW ′).
With the help of the triangle inequality, we then conclude that

ε̂
(2)
≥κ

(
1

ρ
Q

)
≤ ‖Hn(Wρ)−Hn(W )‖2 + ‖Hn(W )−Hn(W ′)‖2

+ δ̂2

(
Hn(W ′), W̃ ′

)
+

√
32

κn
‖W‖2.

(D.2)

After these preparations, we start with the proof of (i). To this end, we

first use the triangle inequality and the fact that δ2(W ′,W ) = ε
(2)
≥κ(W ) to

bound

δ2

(
1

ρ
Q,W

)
= δ2(Hn(Wρ),W )

≤ ‖Hn(Wρ)−Hn(W )‖2 + ‖Hn(W )−Hn(W ′)‖2
+ δ2(Hn(W ′),W ′) + ε

(2)
≥κ(W ).

Next we estimate

E [‖Hn(Wρ)−Hn(W )‖2] = E [‖Hn(Wρ −W )‖2] ≤
√

E
[
‖Hn(Wρ −W )‖22

]
= ‖Wρ −W‖2 = tail(2)

ρ (W )

and
E
[
‖Hn(W )−Hn(W ′)‖2

]
≤ ‖W −W ′‖2,µ = ε

(2)
≥κ(W ).

Since δ̂2

(
Hn(W ′), W̃ ′

)
has the same distribution as δ̂2

(
Hn(W̃ ′), W̃ ′

)
, we

may then use Lemma C.7 and the fact that ‖W ′‖2 ≤ 2‖W‖2 to conclude
that

ε̂
(2)
≥κ

(
1

ρ
Q

)
= Op

(
tail(2)

ρ (W ) + ε
(2)
≥κ(W ) +

4

√
log n

nκ
‖W‖2

)
.

(Note that (1 + log(1/κ))κ−2 = O(ρn) implies that 1/
√
n = O(κ) and hence

log n = O(κn), as required for the application of Lemma C.7.) In a simi-
lar way, we use the fact that δ2(Hn(W ′),W ′) has the same distribution as

δ2(Hn(W̃ ′), W̃ ′) to conclude that

δ2

(
1

ρ
Q,W

)
= Op

(
tail(2)

ρ (W ) + ε
(2)
≥κ(W ) +

4

√
log n

nκ
‖W‖2

)
.
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With the help of (D.1) and Theorem 4.1, this implies that

δ2

(
1

ρ
Ŵ ,W

)
= Op

(
tail(2)

ρ (W ) + ε
(2)
≥κ(W ) +

4

√
log n

nκ
‖W‖2

+ 4

√
1 + log(1/κ)

κ2ρn

)
,

which concludes the proof of (i).
Next we prove (ii). Since W is square integrable, ‖W−Wρ‖2 → 0 as ρ→ 0,

so by combining the law of large numbers for U -statistics (see Lemma C.3
in Appendix C) with a simple two ε argument, we conclude that a.s., the
first term in (D.2) tends to zero. Again by the law of large numbers for

U -statistics, the second term tends to ‖W ′ − W‖2,µ = ε
(2)
≥κ(W ), and by

Lemma C.7 and the fact that Hn(W ′) and Hn(W̃ ′) have the same distribu-
tion, the third term tends to zero as well. Thus a.s., the right side of (D.2)

tends to ε
(2)
≥κ(W ). Combined with (D.1), Lemma C.6, and Theorem 4.1, we

see that for fixed κ,

lim sup
n→∞

δ2

(
1

ρ
Ŵ ,W

)
≤ ε(2)
≥κ(W ) with probability 1.

On the other hand, by the second bound in Lemma C.2,

ε
(p)
≥κ(W ) ≤ lim inf

n→∞
min

W ′′∈B≥κ,n
δp(W

′′,W ).

Since 1
ρŴ ∈ B≥κ,n, this yields ε

(2)
≥κ(W ) ≤ lim infn→∞ δ2

(
1
ρŴ ,W

)
, complet-

ing the proof of (ii).
To prove (iii), note that the condition κ−2

n log(1/κn) = o(nρn) implies in
particular that κn

√
n → ∞, which in turn implies that 1

κnn
log n → 0. We

may therefore again use Lemma C.7 to show that the third term in (D.2)
tends to zero a.s. The first term does not depend on κ, and hence tends
to zero just as before, but now the second term tends to zero as well, by a

two ε argument invoking now the fact that ‖W ′ −W‖2,µ = ε
(2)
≥κn(W ) → 0.

Since the condition κ−2
n log(1/κn) = o(nρn) clearly implies that nκn → ∞,

we conclude that a.s., ε̂
(2)
≥κn

(
1
ρQ
)
→ 0. Combined with (D.1), Lemma C.6,

and Theorem 4.1, this implies (iii).
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APPENDIX E: PROOFS OF THEOREMS 5.1 AND 2.2

Proof of Theorem 5.1. Let A = A(G) and k = d n
bκnce. We will show

that

(E.1) δ̂�

(
Mn(Ŵ ), Q

)
≤ 2ε̂≥κ,�(Q) + 3‖Q−A‖�.

To this end, we first prove that

(E.2) ‖Mn(Ŵ )−A‖� ≤ 2 min
M∈An,≥κ

‖M −A‖�.

To see this, we note that An,≥κ consists of all n × n matrices M such that
M = Mτ for some τ : [n]→ [k] such that the smallest non-empty class of τ
has at least size bκnc. Next we observe that for all τ : [n] → [k], the map
H 7→ Hτ is a contraction in the cut norm. As a consequence, for all n × n
matrices M with M = Mτ ,

‖Aτ −A‖� ≤ ‖Aτ −Mτ‖� + ‖M −A‖� ≤ 2‖M −A‖�.

Because Mn(Ŵ ) = Aτ̂ for some τ̂ : [n]→ [k] that minimizes ‖A−Aτ‖� over
all τ whose smallest non-empty class has size at least bκnc, the bound (E.2)
now follows.

After this preparation, the proof of (E.1) is straightforward. Indeed,

δ̂�

(
Mn(Ŵ ), Q

)
≤ ‖Mn(Ŵ )−A‖� + ‖A−Q‖�

≤ 2 min
M∈An,≥κ

‖M −A‖� + ‖A−Q‖�

≤ 2 min
M∈An,≥κ

‖M −Q‖� + 3‖A−Q‖�

= 2ε̂≥κ,�(Q) + 3‖Q−A‖�.

From here on, the proof proceeds along the same lines as that of Theorem 4.1,
this time starting from the observation (5.1). Using this fact and a concen-
tration argument, we now can show that conditioned on Q, if ρ(Q)n ≥ 1
then

‖Q−A‖� ≤ 15

√
ρ(Q)

n

holds with probability at least 1− e−n, and

‖Q−A‖� = Op

(√
ρ(Q)

n

)
,

independently of the condition ρ(Q)n ≥ 1; see Lemma H.3 in Appendix H
for details. The assertions of the theorem now follow.
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Proof of Theorem 2.2. Keeping the notation from the proof of Theo-
rem 2.1, and using the fact that the distance δ̂� is dominated by the distance
δ̂1, we now bound

δ�

(
1

ρ
Ŵ ,W

)
≤ δ̂�

(
Mn

(
1

ρ
Ŵ

)
,

1

ρ
Q

)
+ δ1

(
1

ρ
Q,W

)
.(E.3)

By Lemma C.1 and Lemma C.2 for p = 1,

ε̂≥κ,�

(
1

ρ
Q

)
≤ δ̂1

(
1

ρ
Q, W̃ ′

)
+

8

κn
= δ̂1

(
Hn(Wρ), W̃

′
)

+
8

κn
,

where W ′ is a minimizer for (2.1) for p = 1, with ‖W ′‖1 ≤ 2‖W‖1 = 2, and

W̃ ′ again stands for W[W ′]. Writing ε
(1)
≥κ(W ) as ε

(1)
≥κ(W ) = δ1(W ′,W ) =

‖W ′ −W‖1,µ for some coupling µ of p and π (which we can assume exists
without loss of generality by passing to equivalent graphons over [0, 1], as in
the proof of Theorem 2.1), we then get

ε̂≥κ,�

(
1

ρ
Q

)
≤ ‖Hn(Wρ)−Hn(W )‖1 + ‖Hn(W )−Hn(W ′)‖1

+ δ̂1

(
Hn(W ′), W̃ ′

)
+

8

κn

and

δ1

(
1

ρ
Q,W

)
≤ ‖Hn(Wρ)−Hn(W )‖1 + ‖Hn(W )−Hn(W ′)‖1

+ δ1(Hn(W ′),W ′) + ε
(1)
≥κ(W ),

where as before Hn(W ) and Hn(W ′) are coupled with the help of µ. From
here on, the proof of Theorem 2.2 proceeds exactly as the proof of The-
orem 2.1 did, with the condition 1

nκ log n = O(1) that is needed to apply
Lemma C.7 guaranteed by the hypotheses of the theorem. We finally arrive
at

ε̂≥κ,�

(
1

ρ
Q

)
= Op

(
tail(1)

ρ (W ) + ε
(1)
≥κ(W ) +

√
log n

nκ

)
and

δ1

(
1

ρ
Q,W

)
= Op

(
tail(1)

ρ (W ) + ε
(1)
≥κ(W ) +

√
log n

nκ

)
.

With the help of (E.3) and Theorem 5.1, this proves the bound in probability.
The almost sure statements are proved similarly.
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APPENDIX F: PROOFS OF PROPOSITIONS 7.1 AND 7.2

The proof of Proposition 7.1 relies on the following technical lemma.

Lemma F.1. Let W be a bounded graphon over some probability space
(Ω,F , π), and let W ′ be a graphon over (Ω,F , π) such that ‖W −W ′‖p ≤ ε
and W ′ is a block model with N classes. Then

ε
(p)
≥κ(W ) ≤ 2ε whenever κ ≤ 1

2N

( ε

‖W ′‖∞

)p
.

Proof. Suppose W ′ is based on the partition (Y1, . . . , YN ) of Ω. Arrang-
ing the classes Yi in P in order of decreasing measure, let Y` be the last
class of measure κ or more. We then define Y ′` =

⋃
i≥` Yi, and Y ′i = Yi for

all i < `. Let W ′′ be a block model with blocks Y ′1 , . . . , Y
′
` and the same

values as W ′ on Yi × Yj when i, j < ` but the value 0 when i or j equals
`. Clearly W ′′ ∈ B≥κ. To prove the proposition, we will have to show that
‖W ′ −W ′′‖p ≤ ε. To this end, we note that W ′′ and W ′ agree on Ω0 × Ω0,
where Ω0 = Y1 ∪ · · · ∪ Y`−1, and that ‖W ′ −W ′′‖∞ ≤ ‖W ′‖∞. As a conse-
quence,

‖W ′ −W ′′‖p = ‖(W ′ −W ′′)(1− 1Ω0×Ω0)‖p ≤ ‖W ′‖∞
(
1− π(Ω0)2

)1/p
.

But because the classes Y`+1, . . . , YN have measure smaller than κ,

π(Ω0) ≥ 1− `κ ≥ 1−Nκ,

showing that

‖W ′ −W ′′‖p ≤ ‖W ′‖∞
(
2Nκ

)1/p
,

which is bounded by ε if κ ≤ 1
2N (ε/‖W ′‖∞)p.

Proof of Proposition 7.1. We will prove the proposition for D = 1+
2C(2R)α.

To prove the first statement, let C0 = minx,y∈ΛRW (x, y). Since C0 =∫
C0 ≤ ‖W‖1 = 1, Hölder continuity implies that ‖W‖∞ ≤ 1 + 2C(2R)α =

D.
To prove the second statement, consider k ∈ N, and let P be the partition

of ΛR into kd cubes of side-length a = 2R/k. For a given class Y ∈ P, two
points x, x′ ∈ Y have distance |x−x′|∞ ≤ a. Thus, if Y and Y ′ are two classes
in P, then |W (x, y)−W (x′, y′)| ≤ 2Caα = 2C(2Rk−1)α whenever x, y ∈ Y
and x′, y′ ∈ Y ′. As a consequence ‖W −WP‖∞ ≤ 2C(2Rk−1)α ≤ Dk−α.
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If π is the uniform measure over ΛR, then each class Y of P has measure
π(Y ) = k−d, so setting k = bκ−1/dc, we obtain k−1 ≤ 2κ1/d and thus

ε
(p)
≥κ(W ) ≤ 2Dκα/d,

which proves the proposition for the case of the uniform measure. (Recall

that δp and hence ε
(p)
≥κ(W ) are decreasing functions of p.)

But for general measures, some of the classes of P might have tiny mea-
sure. To fix this, we merge all classes of measure less than κ (where κ will
now be smaller than k−d) with the smallest of those which have measure at
least κ. Lemma F.1 shows that for κ small enough, this actually works. To
apply the lemma, we set N = kd and observe that ‖WP‖∞ ≤ ‖W‖∞ ≤ D
and ‖W −WP‖∞ ≤ DN−α/d. Lemma F.1 then implies that

ε
(p)
≥κ(W ) ≤ 2DN−α/d

provided 2κ ≤ N−
pα+d
d . Thus for κ ≤ 1/2, we may choose

k = b(2κ)−1/(pα+d)c

to show that (7.1) holds for κ ≤ 1/2. For κ ≥ 1/2, that would amount to
k = 0, but fortunately this case is trivial: the right side of (7.1) is at least 2D

and hence at least 2, while ε
(p)
≥κ(W ) ≤ 1 for a normalized graphon, showing

that (7.1) holds for κ ≥ 1/2 as well.

Proof of Proposition 7.2. Let R0 ≥ 1 be such that π(ΛR0) ≥ 1/2,
and let D0 = 4 + 2CRα0 . Then

min
x,y∈ΛR0

W (x, y) ≤ 1

π(ΛR0)2

∫
ΛR0
×ΛR0

W ≤ ‖W‖1
π(ΛR0)2

≤ 4.

Denoting the minimizer of W in ΛR0 × ΛR0 by (x0, y0), we then have

W (0, 0) ≤ 4 + C|x0|α∞ + C|y0|α∞ ≤ 4 + 2CRα0 ,

implying that
W (x, y) ≤ D0 + C|x|α∞ + C|y|α∞

for all x, y ∈ Rd. It will be convenient to introduce the functions f(x, y) =
C|x|α∞ and g(x, y) = C|y|α∞ and write this inequality as

W ≤ D0 + f + g.
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By our definition of β′ and our assumption on π,

‖f‖p(1+β′) = C
(∫
|x|β∞ dπ(x)

) 1
p(1+β′)

<∞.

To prove the bound on tail
(p)
ρ (W ), we observe that 0 ≤W−Wρ ≤W1W≥1/ρ.

As a consequence,

tail(p)ρ (W ) ≤ ‖W1W≥1/ρ‖p ≤ ρβ
′‖W 1+β′‖p = ρβ

′‖W‖1+β′

p(1+β′)

≤ ρβ′
(
‖D0 + f + g‖p(1+β′)

)1+β′

≤ ρβ′
(
D0 + ‖f‖p(1+β′) + ‖g‖p(1+β′)

)1+β′

≤ Dρβ′

for some constant D depending on α, β, p, and C, as well as the measure π
(via R0 and the norm ‖f‖p(1+β′)).

To prove the bound on the oracle error, we want to construct a good block
model approximation to W . To this end, we first bound the contributions
to ‖W‖p that come from points x, y outside a box ΛR, where R ≥ 1 will be
chosen later. If we set r = CRα, then the condition (x, y) /∈ ΛR×ΛR implies
|x|∞ > R or |y|∞ > R and hence f + g > r. But

‖W1f+g>r‖p ≤ r−β
′‖(f + g)β

′
W‖p ≤ r−β

′‖(D0 + f + g)β
′+1‖p ≤ Dr−β

′
,

and hence

(F.1) ‖W1(Rd×Rd)\(ΛR×ΛR)‖p ≤ D1R
−β′α,

as long as D1 is chosen so that D1 ≥ DC−β
′
.

Next we consider a partition P = (Y1, . . . , YN ) of ΛR into cubes of side
length 2R/k, with N = kd. We define βij to be the average of W over
Yi × Yj , and

W ′ =

N∑
i,j=1

βij1Yi×Yj .

Since W ′ is composed of parts obtained by averaging over subsets in ΛR,
where W is bounded by D0 + 2CRα ≤ D0(1 +Rα) ≤ 2D0R

α, we have

‖W ′‖∞ ≤ 2D1R
α,

provided D1 is chosen to be at least D0.
Inside ΛR × ΛR, we bound |W (x, y)−W ′(x, y)| by

2C(2R/k)α = 2C(2R)αN−α/d ≤ D1R
αN−α/d,
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where D1 = max{D0, DC
−β′ , 2C2α}. Finally W − W ′ = W outside ΛR.

Combined with the bound (F.1), we conclude that

‖W −W ′‖p ≤ ε,

where ε = D1(RαN−α/d+R−β
′α). With the help of Lemma F.1 we conclude

that
ε

(p)
≥κ(W ) ≤ 2D1(RαN−α/d +R−β

′α),

provided that

κ ≤ 1

2N

(RαN−α/d +R−β
′α

2Rα

)p
=

1

2N

(N−α/d +R−(β′+1)α

2

)p
and R ≥ 1. Choosing R = N

1
d(β′+1) , we find that

ε
(p)
≥κ(W ) ≤ 4D1N

− β′α
d(1+β′) ,

provided that κ ≤ 1
2N
− pα+d

d .

Because κ ≤ 1/2, we can choose k =
⌊(

1
2κ

) 1
pα+d

⌋
. Then N = kd implies

1

2d

(
1

2κ

) d
pα+d

≤ N ≤
(

1

2κ

) d
pα+d

.

This yields a bound of

ε
(p)
≥κ(W ) ≤ 4D1

(
2d(2κ)

d
pα+d

) β′α
d(1+β′)

,

which is O
(
κα
′)

. Again the implicit constant depends only on α, β, p, C,
and π.

APPENDIX G: POWER-LAW GRAPHS

Recall that the normalized degree distribution of a graph G on [n] is de-
fined as the empirical distribution of the normalized degrees di/d̄, where d̄ is
the average degree. We say that a sequence (Gn)n≥0 has convergent degree
sequences if the cumulative distribution functions DGn of the normalized
degrees converge to some distribution function D in the Lévy-Prokhorov dis-
tance dLP or, equivalently, if DGn(λ)→ D(λ) for all λ at which D is continu-
ous. (Recall that a distribution function is a nondecreasing, right-continuous
function D : R→ [0, 1] such that limλ→−∞D(λ) = 0 and limλ→∞D(λ) = 1.)
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We say that the sequence (Gn)n≥0 has a power-law degree distribution
with exponent γ if its degree distributions converge to D satisfying

D(λ) = 1−Θ
(
λ−(γ−1)

)
as λ→∞,

and we say that a graphon W has a power-law degree distribution with ex-
ponent γ if DW = 1−Θ

(
λ−(γ−1)

)
as λ→∞.

Note that it is γ − 1 that appears in the exponent, not γ. The naming
conventions in the above definitions are based on density functions, rather
than distribution functions: if the degree distribution is absolutely continu-
ous with respect to Lebesgue measure and thus has a density function f(λ),
and if f(λ) = Θ

(
λ−γ

)
as λ→∞, then the distribution function D satisfies

1−D(λ) =

∫ ∞
λ

f(λ) dλ = Θ
(
λ−(γ−1)

)
.

In this appendix, we give two examples of W -random graphs with power-
law degree distributions and establish bounds on the convergence rate of our
estimation procedures for these graphons.

We start with an example that can be expressed as a Hölder-continuous
graphon over Rd, even though we will first define it as a graphon over [0, 1].
It is the graphon

(G.1) W (x, y) =
1

2
(g(x) + g(y)) where g(x) = (1− α)(1− x)−α.

for some α ∈ (0, 1). Note that the degrees of this graphon are Wx = 1
2 +

1
2g(x), with a distribution function DW (λ) that is 1−Θ

(
λ−1/α

)
as λ→∞,

showing that the graphs Gn(ρnW ) have a power-law degree distribution with
exponent γ = 1 + 1

α .
As a graphon over [0, 1] equipped with the uniform measure, this graphon

is not continuous, but it turns out that it can be expressed as an equivalent
graphon over Rd that is Hölder-continuous. To see this, let us consider a
probability distribution π on Rd such that the distribution of the L2 norm
r = |x|2 of x ∈ Rd is absolutely continuous with respect to the Lebesgue
measure on [0,∞), with a strictly positive density function f(r). We will
want to construct a measure-preserving map φ : Rd → [0, 1) to obtain an
equivalent graphon W φ over Rd. Requiring φ to be measure preserving is
equivalent to requiring that π(φ−1([0, a])) = π({x : φ(x) ≤ a}) = a. We will
construct φ radially, via a map F such that φ(x) = F (|x|2), and we will make
sure that F is strictly increasing, in which case φ(x) ≤ a is equivalent to
|x|2 ≤ F−1(a). Thus, our condition for φ to be measure preserving becomes
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a =
∫

1|x|2≤F−1(a) dπ(x), or equivalently,
∫

1|x|2≤r dπ(x) = F (r), showing
that F (r) is the cumulative distribution function of |x|2 (which is strictly
monotone by our assumption that f(r) > 0 for all r ∈ [0,∞)). Taking
F (r) = 1− 1

r+1 , we get

W φ(x, y) =
1− α

2

( 1

1− F (|x|2)

)α
+

1− α
2

( 1

1− F (|y|2)

)α
=

1− α
2

(
(1 + |x|2)α + (1 + |y|2)α

)
,

showing that W is equivalent to an α-Hölder-continuous graphon over Rd
equipped with any measure for which the cumulative distribution function
of |x|2 is equal to F . As a consequence, we may use the results of Section 7
to give explicit bounds on the estimation errors for the least squares and
least cut algorithms. We will not give these bounds here, since for W of the
form (G.1), one can obtain slightly better bounds using the actual form of
W ; see Lemma G.1 below.

The second example we consider in this appendix is the graphon W over
[0, 1] that is defined by

(G.2) W (x, y) = g(x)g(y) where again g(x) = (1− α)(1− x)−α.

As before, we equip [0, 1] with the uniform measure. Now the degrees of W
are equal to g(x), which shows that again, the W -random graphs obtained
from W have power-law degrees with exponent γ = 1 + 1

α .
Note that the second graphon cannot be expressed as a Hölder-continuous

graphon over Rd in the sense of Section 7. Indeed, suppose W̃ were such
a graphon. By Theorem A.5, there would exist a standard Borel twin-free
graphon U such that W̃ = Uφ for some measure-preserving map φ from Rd to
the space on which U is defined. Since W is twin-free as well we may without
loss of generality assume that U = W (use Theorem A.4). But this means
that W̃ would be of the form W̃ (x, y) = W (φ(x), φ(y)) = g(φ(x))g(φ(y)) for
some measure-preserving map φ : Rd → [0, 1]. Since g(φ(x)) is unbounded,
this cannot be a Hölder-continuous function of the argument y.

Nevertheless, we can give explicit bounds on our estimation error since

for W of the form (G.1) or (G.2), we can estimate ε
(p)
≥κ(W ) and tail

(p)
ρ (W )

directly.

Lemma G.1. Let α ∈ (0, 1), let 1 ≤ p < 1/α, and define α′ = 1
p −α and

β′ = 1−pα
pα . If W is the power-law graphon (G.1), then

ε
(p)
≥κ(W ) = O

(
κα
′)

and tail(p)ρ (W ) = O
(
ρβ
′)
,
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while if W is the power-law graphon (G.2), then

ε
(p)
≥κ(W ) = O

(
κα
′)

and tail(p)ρ (W ) = O
(
ρβ
′ | log ρ|1/p

)
.

Proof. We start with the proof of the tail bounds. Defining functions
g1, g2 : [0, 1]2 → [0,∞) by g1(x, y) = g(x) and g2(x, y) = g(y), we write
the first graphon as 1

2(g1 + g2). Noting that W ≥ ρ−1 implies that either
g1 ≥ 1/ρ or g2 ≥ 1/ρ, we bound

‖W −Wρ‖p ≤ ‖W1W≥1/ρ‖p ≤ ‖W (1ρg1≥1 + 1ρg1≥1)‖p

=
1

2
‖g11ρg1≥1 + g21ρg1≥1 + g11ρg2≥1 + g21ρg2≥1‖p

≤ ‖g1ρg≥1‖p + ‖1ρg≥1‖p.

The two terms can easily be calculated explicitly, giving a term of order

O
(
ρ

1−pα
pα
)

for the first and a term of order O
(
ρ

1
pα
)

for the second. For the
second graphon, we note that the condition W (x, y) ≥ 1/ρ is equivalent to

(1− x)(1− y) ≤
(
ρ(1− α)2

)1/α
. Changing to the variables 1− x and 1− y,

we have to estimate the integral∫ 1

0

∫ 1

0
(xy)−pα1xy≤ρ1/α dx dy.

The integral can again be calculated explicitly, giving an error term of order

O
(
ρ

1−pα
α | log ρ|

)
. Taking the pth root, we obtain the claimed tail bound for

the second graphon.
All that remains is to estimate the oracle errors. Let I1, . . . , Ik be a par-

tition of [0, 1] into k adjacent intervals of size ε = 1
k (ordered from left to

right), let g′ be the function obtained by averaging g over these intervals on
I1 ∪ I2 · · · ∪ Ik0 (where k0 will be determined later), and let g′ = 0 on the
remaining intervals. Define g1, g2 : [0, 1]2 → [0,∞) as above, define g′1 and g′2
analogously, and set W ′ = 1

2(g′1 + g′2) for the graphon (G.1) and W ′ = g′1g
′
2

for the graphon (G.2). With this notation,

‖W −W ′‖p =
1

2
‖g1 + g2 − g′1 − g′2‖p = ‖g − g′‖p

for the graphon (G.1), and

‖W−W ′‖p = ‖g1g2−g′1g′2‖p ≤ ‖(g1−g′1)g2‖p+‖g′1(g2−g′2)‖p ≤ ‖g‖p‖g−g′‖p

for the graphon (G.2). So all we need to show is that ‖g − g′‖p = O
(
εα
′)

.
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For i ≤ k0, let x̄i ∈ Ii be defined by 1
ε

∫
Ii
g = g(x̄i). For x ∈ Ii, we bound

|g(x)− g(x̄i)| ≤ maxy∈Ii

∣∣∣dg(y)
dy

∣∣∣|x− x̄i|, implying that the integral of |g(x)−

g(x̄i)|p over Ii can be bounded by εp+1 maxy∈Ii

∣∣∣dg(y)
dy

∣∣∣p ≤ εp+1(1−iε)−p(1+α).

Summing over i = 1, . . . , k0, we get a contribution of O
(
εp(1−k0ε)

1−p(1+α)
)

to ‖g−g′‖pp. The integral of gp from k0ε to 1 will contribute O
(
(1−k0ε)

1−αp).
As a consequence, the choice k0 = k − 1 (which yields 1− k0ε = ε) leads to
the estimate

‖g − g′‖pp = O
(
ε1−αp),

as desired.

APPENDIX H: CONCENTRATION BOUNDS

We start with a slight generalization of the multiplicative Chernoff bound.

Lemma H.1. Let X1, . . . , Xn be independent random variables with val-
ues in R, let X =

∑n
i=1Xi, and suppose there exists X0 ∈ [0,∞) such that∑
i

E[Xm
i ] ≤ X0 for all m ≥ 2.

Then

Pr(X − E[X] ≥ X0t) ≤ exp

(
−min{t, t2}X0

3

)
for t ≥ 0.

Proof. As in the proof of the standard Chernoff bound, we estimate the
expectation of eαX for a constant α ≥ 0 to be determined later. To this end,
we first bound

E[eαXi ] = 1 + αE[Xi] +
∑
m≥2

αmE[Xm
i ]

m!

≤ exp
(
αE[Xi] +

∑
m≥2

αmE[Xm
i ]

m!

)
,

which together with the assumption of the lemma proves that

E[eαX ] ≤ exp
(
αE[X] +

∑
m≥2

αm

m!

∑
i

E[Xm
i ]
)
≤ eαE[X]+(eα−α−1)X0 .
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As a consequence,

Pr
(
X ≥ E(X) + tX0) = Pr

(
eαX−αE[X]−tαX0 ≥ 1

)
≤ E[eαX ]e−αE[X]−tαX0

≤ e(eα−α−1)X0−tαX0 .

Choosing α = log(1 + t) yields eα − 1 − α − tα = t − (t + 1) log(t + 1) and
hence

Pr
(
X ≥ E(X) + tX0) ≤ e−X0((t+1) log(t+1)−t) ≤ exp

(
−X0

3
min{t, t2}

)
.

Lemma H.1 immediately implies the following lemma. To state it, we
define, for an arbitrary symmetric matrix Q ∈ [0, 1]n×n with empty diagonal,
the random symmetric matrix A = Bern(Q) ∈ {0, 1}n×n obtained by setting
Aij = Aji = 1 with probability Qij , independently for all i < j, and Aij = 0
whenever i = j. Note that with this notation, E[Aτ ] = Qτ for all τ : [n] →
[k]. The following lemma states that Aτ is tightly concentrated around its
expectation.

Lemma H.2. Let 1 ≤ k ≤ n, let Q be a symmetric n × n matrix with
entries in [0, 1] and empty diagonal, and let A = Bern(Q). Let ε be the
random variable ε = maxτ : [n]→[k] ‖Aτ −Qτ‖1. Then

(H.1) E[ε] ≤ 9

√
ρ(Q)

(
1 + log k

n
+
k2

n2

)
.

If nρ(Q) ≥ 1, then with probability at least 1− e−n

(H.2) ε ≤ 8

√
ρ(Q)

(
1 + log k

n
+
k2

n2

)
.

Recall that ρ(Q) means 1
n2

∑
i,j Qij .

Proof. We begin with the proof of (H.2). We distinguish two cases:

If 1+log k
n + k2

n2 ≥ ρ(Q), all we need to show is that with probability at
least 1− e−n, the left side is at most 8ρ(Q). To prove this, we bound

‖Aτ −Qτ‖1 ≤ ‖Aτ‖1 + ‖Qτ‖1 = ‖A‖1 + ‖Q‖1.
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Now we apply Lemma H.1 to the random variable X =
∑

i<j Aij . Because

E[
∑

i<j A
m
ij ] =

∑
i<j Qij = n2

2 ρ(Q), we can take X0 = n2

2 ρ(Q). Taking t = 6,

we see that with probability at least 1− e−n2ρ(Q) ≥ 1− e−n,

‖Aτ −Qτ‖1 ≤ 2‖Q‖1 + 6ρ(Q) = 8ρ(Q).

If 1+log k
n + k2

n2 ≤ ρ(Q), we will use a union bound over all τ : [n] → [k].
Considering first a fixed τ : [n]→ [k], we rewrite

‖Aτ −Qτ‖1 =
2

n2

∑
u<v

(Quv −Auv)sign((Qτ )uv − (Aτ )uv)

= max
B∈Bτ

2

n2

∑
u<v

Buv(Quv −Auv),

where Bτ consists of all matrices with entries ±1 that are constant on the
partition classes of τ (note that Bτ has size 2k

2
0 , where k0 ≤ k is the number

of non-empty classes in τ). Applying Lemma H.1 again, this time to the ran-
dom variables BuvAuv, noting that

∑
u<v E[(BuvAuv)

α] ≤
∑

u<v E[Auv] ≤
n2

2 ρ(Q), and using the union bound to deal with the maximum over B′ ∈ Bτ ,
we find that

Pr (‖Aτ −Qτ‖1 ≥ tρ(Q)) ≤ 2k
2

exp

(
−min{t, t2}

6
n2ρ(Q)

)
.

Setting

t = 6

√
1 + log k

nρ(Q)
+

k2

n2ρ(Q)
,

our case assumption implies that t ≤ 6, which in turn implies that

min{t, t2} ≥ t2

6
= 6

(
1 + log k

nρ(Q)
+

k2

n2ρ(Q)

)
.

As a consequence, for each partition τ : [n]→ [k],

Pr(‖Aτ −Qτ‖1 ≥ tρ(Q)) ≤ exp
(
k2 log 2− n(1 + log k)− k2

)
≤ e−n(1+log k).

Taking the union bound over all partitions τ : [n] → [k], we obtain the
desired bound.

All that remains is to prove (H.1). If nρ(Q) ≤ 1, we bound

E[ε] ≤ E[‖A−Q‖1] ≤ ‖Q‖1 + E[‖A‖1] = 2ρ(Q) ≤ 2
√
ρ(Q)/n.
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If nρ(Q) ≥ 1, we use (H.2) and the fact that ε ≤ ‖Q‖1 + ‖A‖1 ≤ 2 to bound

E[ε] ≤ 8

√
ρ(Q)

(
1 + log k

n
+
k2

n2

)
+ 2e−n.

Because 2e−n ≤ 1/n ≤
√
nρ(G)/n =

√
ρ(G)/n, this completes the proof.

Our next lemma states that a similar bound holds for the cut norm of
A−Q.

Lemma H.3. Let n ≥ 2, let Q be a symmetric n× n matrix with entries
in [0, 1] and empty diagonal, and let A = Bern(Q). Then

E[‖A−Q‖�] ≤ 16

√
ρ(Q)

n
.

If nρ(Q) ≥ 1, then with probability at least 1− e−n,

(H.3) ‖A−Q‖� ≤ 15

√
ρ(Q)

n
.

Proof. A bound of the form (H.3) can easily be inferred from Lemma 7.2
in [2]. For the convenience of the reader, we given an independent, slightly
simpler proof here.

Let Fn be the set of functions f : [n]→ {−1,+1}. It is not hard to check
that

‖A−Q‖� ≤ max
f,g∈Fn

1

n2

∑
i,j

f(i)g(j)(Aij −Qij)

≤ max
f,g∈Fn

2

n2

∑
i<j

f(i)g(j)(Aij −Qij).

Proceeding as in the proof of Lemma H.2, a union bound and Lemma H.1
now imply that

Pr (‖A−Q‖� ≥ tρ(Q)) ≤ 4n exp

(
−min{t, t2}

6
n2ρ(Q)

)
.

Choosing t = 6 log(4e)/
√
nρ(Q) and observing that 6 log(4e) ≤ 15 then

gives the high probability bound. The bound in expectation follows from this
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bound and the observation that ‖A − Q‖� ≤ 2ρ(Q). Indeed, if nρ(Q) ≥ 1,
then

15
√
ρ(Q)/n+ 2e−nρ(Q) ≤ 15

√
ρ(Q)/n+ 2ρ(Q)/(en)

≤ 16
√
ρ(Q)/n

(for the final step recall that ρ(Q) ≤ 1), and if nρ(Q) ≤ 1, then 2ρ(Q) ≤
2
√
ρ(Q)/n.
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