
On the Stability of Web Crawling and Web
Search

Reid Anderson1, Christian Borgs1, Jennifer Chayes1,
John Hopcroft2, Vahab Mirrokni3, and Shang-Hua Teng4

1 Microsoft Research
2 Cornell University
3 Google Research

4 Boston University

Abstract. In this paper, we analyze a graph-theoretic property moti-
vated by web crawling. We introduce a notion of stable cores, which is
the set of web pages that are usually contained in the crawling buffer
when the buffer size is smaller than the total number of web pages. We
analyze the size of core in a random graph model based on the bounded
Pareto power law distribution. We prove that a core of significant size
exists for a large range of parameters 2 < α < 3 for the power law.1

1 Introduction

Since the World Wide Web is continually changing, search engines [1] must
repeatedly crawl the web, and update the web graph. In an ideal world one would
search, discover, and store all web pages on each crawl. However, in practice
constraints allow indexing and storing only a fraction of the web graph [3]. This
raises the question as to what fraction of the web one needs to crawl in order to
maintain a relatively stable set of pages that contains all sufficiently important
web pages.

When a link to a web page is encountered, the page is said to be discovered.
When the page is retrieved and explored for its links, it is said to be explored.
Thus, we can partition the web into three types of pages. (1) Pages the crawl
has explored; (2) Pages the crawl has discovered but not explored; and (3) All
other pages.

Web crawling can be viewed as a dynamic process over the entire web graph.
As time goes by, these three sets change dynamically, depending on the crawling
algorithm as well as the space/time constraints. Let St be the set of pages that
have been discovered and explored at time t. The search engine typically ranks
pages in St. When users make queries during phase t, only pages from St are re-
turned. Presumably these are the pages that were deemed sufficiently important
to index and are used to answer queries. Let Ct be the set of pages that have
been discovered but not explored at time t. At this point the edges from pages
in Ct are not known since the search has not crawled these pages.
1 Most of this work was done while the authors were at Microsoft Research.
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Consider the subgraph of the web that consists of all web pages in St ∪Ct and
all directed edges from pages in St ending in either St or Ct. At the next stage
the search engine would calculate the page rank of all pages in this graph and
select the set of size b of pages of highest page rank to be St+1. The pages in
St+1 would then be explored to produce a new set Ct+1 of pages reachable from
pages in St+1 but which are not in St+1. Here b is determined by the available
amount of storage.

The space constraints immediately raise several basic questions in web crawl-
ing and web search. An important question is how large b needs to be in order
for the search engine to maintain a core that contains all sufficiently important
pages from the web. Assuming the web is on the order of 100 billion pages, is a
buffer of size of 5 billion sufficient to ensure that the most important 100 mil-
lion pages are always in the buffer and hence available to respond to queries?
In general, what percent of pages are stable in the sense that they are always
in the buffer? What percent of pages are regularly moving in and out of the
buffer? What percent of the buffer is just random pages? What is the relation-
ship between the importance of a page (such as high page rank or high degree)
with the frequency that page is in the buffer? These questions are particular
interesting when the graph is changing with the time? How frequently must we
do a crawl where frequency is measured by the percentage of the graph that
changed between the crawls? How should we design high a quality crawl given
the space and time constraints? For example, should we completely explore the
highest page ranked pages or should we explore some fraction of links from a
larger number of pages, where the fraction is possibly determined by the page
rank or degree? How accurately do we need to calculate the page rank in order
to maintain the quality? Could we substitute in-degree for page rank?

Clearly the theoretical answers to above questions depend on how the un-
derlying graph is modeled. We investigate the behaviors of the web crawling
process and web crawling dynamics. The motivation behind our investigation is
to design better and robust algorithms for web crawling and web search.

We will focus on the stability of web crawling and its potential impact to web
search. In particular, we analyze a graph-theoretic property that we discovered
based on our initial experiments involving web crawling dynamics.

Suppose b pages are stored at each stage of the crawling. We have observed
that, for various choices of EXPLORE and STORE functions and large enough
b, the sets St do not converge. However, there exists t0 such that

(
∩∞

t≥t0
St

)

converges to a non-empty set. We call K =
(
∩∞

t≥t0
St

)
the core of the crawling

dynamics with (EXPLORE, STORE) transitions. Naturally, the size of the core
depends on b as well as on (EXPLORE, STORE). When b is small, the core might
be empty. Naturally, when b = |V |, the whole graph is the core. When b = 1, we
do not expect a non-empty core.

In this paper, we consider a simplified crawling algorithm with limited space.
Let

Ct = EXPLORE(St−1) = {v |(u → v) ∈ E, for some u ∈ St−1} − St−1,
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be the set of direct neighbors of St−1. For each page v ∈ St−1 ∪ Ct, let Δt(v) be
the number of links from pages in St−1 to v. Then, STORE(St−1, Ct) is the set
of b pages with the largest Δt value, where ties are broken according to some
predefined rule.

We analyze the size of the core in a random graph model based on the bounded
Pareto power law distribution [2,4]. We prove that a core of significant size exists
when the power law parameter α lies in the range [2 : 3).

2 The Core

Web crawling defines a sequence B0, ..., Bt,...,B∞, where Bt is the content of
the buffer at time t. If a page enters the buffer at some stage and stays in the
buffer after that, then we say the page is in the core of of the sequence.

For example, suppose the web graph is fixed and the crawl process is deter-
ministic, then since the number of the subsets of web pages of size b is finite,
the above sequence eventually become periodic. In other words, there exist a t0
and p such that Bt0 = Bt0+p. In this case, the core of the sequence is equal to
∩t0+p

t=t0 Bp. When the graph is fixed, but the web crawling is stochastic, we define
the core as those pages that stay in the buffer with high probability.

In the rest of the paper, we assume B0 is a set of size b uniformly chosen from
the vertices of the input graph. The core of this graph is then defined according
to the sequence produced by the crawling process.

3 Bounded Pareto Degree Distributions and Its Graphs

One of the objectives of this paper is to estimate the core size as a function of b,
for a directed graph G. Naturally, this quantity depend on G and the initial set
B0. It is well known that the web graph has power law degree distribution [5].
To present our concepts and results as clearly as possible we use the following
“first-order approximation” of the power-law graphs with bounded Pareto degree
distributions. We first define a degree vector, which is the expected degree of
a bounded Pareto degree distribution [2]. Then, we consider random graphs
with expected degrees specified by the degree vector. We will show the core size
depends on both the degree distribution and on the size of the buffer.

The expected number of vertices of degree k in the bounded Pareto degree
distribution with parameters α > 1 and positive integer n is Cnk−α where
C = 1/ (

∑∞
x=1 x−α). We can construct a typical degree sequence as follows. Let

hi be the largest integer such that
∑∞

k=hi
Cnk−α ≥ i. The sequence starts with

the highest degrees (h1, ..., hi, ...). Note that hi is approximately

(
C

α − 1

)1/(α−1) (n

i

)1/(α−1)
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To construct the degree vector dα,n, we start at the right with the degree one
vertices and work to the left. Let k0 be the smallest integer such that Cnk−α < 1.

– For each 1 ≤ k < k0, from right to left, assign the k to the next Cnk−α

entries in dα,n. To be more precise, when Cnk−α is not an integer, we first
assign k to �Cnk−α	 entries, and then, with probability Cnk−α −�Cnk−α	,
add one more entry with value k. Suppose this step assigns n′ entries.

– For j = 1 : n − n′, assign the value hj to dα,n[n − n′ − j].

In other words, dα,n is a sorted vector of expected degrees, from the largest
to the smallest. In this vector, the smallest degree k that appear s times approx-
imately solves Cnk−α = s, implying k ≈ s−1/α (Cn)1/α

.
Note that for α > 2, the expected number of edges is proportional to n and

for α = 2 the expected number of edges is proportional to n logn. That is,

E [||dα,n||1] =
{

Θ(n) if α > 2, and
Θ(n log n) if α = 2.

The graph we analyze has n vertices, labeled 1 to n, and is generated by the
following random process: Let m = ||dα,n||1. Independently choose m directed
edges, by first selecting a vertex i randomly according to dα,n, and then choosing
another vertex j randomly, also according to dα,n. Note that this graph model
allows multiple edges and self-loops.

Call a random graph from this distribution a random (α, n)-BBPL graph.
This class of graphs has several statistical properties. The expected number of
vertices with in-degree 0 is highly concentrated around

∑
k=1 e−kCnk−α, which

is a constant fraction of n.

Lemma 1. For h ≥ 3, the expected number of vertices with in-degree h or larger
in a random (α, n)-BPPL graph is highly concentrated around

C

Θ(n1/(1−α))∑

k=1

(
n

h

) (
k

n

)h
n

kα
≤ Θ

( n

h(α−1)(1+1/(2h))

)
.

4 Estimating the Core Size for Power-Law Graphs

Consider a buffer B of b vertices. These vertices induce a graph which we will
refer to as the buffer-induced graph of B. The buffer-induced degree of a vertex
is its degree in the buffer-induced graph.

4.1 A Simple Thought Process

When the buffer size is a fraction of n, a vertex with constant degree may have
buffer-induced degree of 0 and thus may drop out of the buffer. This implies
that the core size might be o(n), depending on the tie breaking rule. However,
in this section, we show that for any ε, the core size is Ω(n1−ε).
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Suppose we do a crawl with a buffer large enough to hold every vertex of
in-degree at least one in the web. This does not implies that the vertices with
indegree at least in the original graph may stay or enter the buffer, since its
buffer-induced may be 0. We show with high probability, the two highest degree
vertices, to be called 1 and 2, are mutually connected and will enter the buffer in
step 1. The fact that they are mutually connected means that they will always
remain in the buffer. In subsequent steps, all vertices reachable from 1 and 2 will
be added to the buffer and will remain in the buffer. Thus, the core contains all
these vertices. We now give a lower bound on the expected number of vertices
reachable from 1 and 2, which provides a lower bound on the core size.

Lemma 2. The probability that vertices 1 and 2 are mutually connected to each
other in a random (α, n)-BPPL graph is

1 − e
Θ

�
−n

3−α
α−1

�
.

Proof. Let m be the number of edges in a random (α, n)-BPPL graph. Thus,
m = ||dα,n||1 and is linear in n. The probability that 1 and 2 are not mutually
connected to each other is at most

(
1 − Θ

(
n1/(α−1)

m

n1/(α−1)

m

))m

= e
−Θ

�
n

3−α
α−1

�
.

�

With a relatively small buffer of size Θ(n1−1/(α−1) log n) containing randomly
chosen vertices, the probability that vertices 1 and 2 will be in the buffer in the
next step is high. Note that for α = 3, this buffer size is only Θ(

√
n).

Lemma 3. Suppose G = (V, E) is a random (α, n)-BPPL graph and S is a
set of b randomly chosen vertices of V . There exists a constant c such that if
b ≥ cn1−1/(α−1) log n, then with high probability, there are edges from vertices in
S to both vertices 1 and 2.

Proof. Because in our model, the expected degree of each vertex is at least 1,∑
u∈S dα,n[u] ≥ b. The expected indegrees of vertices 1 and 2 are Θ(n1/(α−1)).

Their expected indegrees counting only edges from S are

Θ

(
n1/(α−1)

n

) ∑

u∈S0

dα,n[u] = Θ

(
n1/(α−1) b

n

)
≥ Θ(c log n).

As this bound is highly concentrated, when c is large enough, with high prob-
ability (e.g., 1 − n−Θ(c)), the buffer-induced in-degrees of vertices 1 and 2 are
larger than 1. �

Lemma 4. For 2 < α < 3, with high probability, the number of vertices reach-
able from {1, 2} in a random (α, n)-BPPL graph G is Ω(n1−ε).
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Here we will sketch an outline of the proof but skip some technical details since
we will give a stronger result later with all the details. To better illustrate the
analysis, instead of writing a proof for all α : 2 < α < 3, we choose a typical
value in this range and provide an explicit derivation. The proof is easily adapted
to handle all α : 2 < α < 3. Our choice of “typical” value is α = 11/4. In this
case, note that the expected degree of vertex 1 is Θ(n4/7). The expected number
of vertices directly reachable from {1, 2} is

Θ

(
∑

k

[

1 −
(

1 − k

n

)n4/7]
n

k11/4

)

= Θ(n4/7).

The expected total degree of the nodes directly reachable from {1, 2} is

Θ

(
∑

k

k

[

1 −
(

1 − k

n

)n4/7]
n

k11/4

)

= Θ

(∫ n3/7

1

n4/7

k3/4

)

= Θ(n19/28)

Let S0 = {1, 2}. Let St be the set defined by the set of vertices t hops away from
{1, 2}. Let Δ(St) be their expected degree. We thus have

E[|S1|] = Θ(n4/7), and E[|Δ(S1)|] = Θ(n19/28).

The key to the analysis is that E[|Δ(S1)|] is magnitudely larger than E[|S1|],
which means that the frontiers of the Breadth-First Search starting from {1, 2}
have good expansions. There are two types of out-links from St: the edges to
S0 ∪ ... ∪ St and the edges to St+1. We now bound the expected size of S2 and
the expected total degree Δ(S2) of S2. A similar analysis can be extended to
any t.

Let F1 = {v | (u → v) ∈ E, for some u ∈ S1} and let B1 = F1 ∩ (S0 ∪S1). We
have S2 = F1 − B1. Note that E[|B1|] ≤ E[|S1|] + 2 = Θ(n4/7). Thus,

E[|S2|] = E[|F1|] − E[|B1|]

=

(
∑

[

1 −
(

1 − k

n

)n19/28]
n

k11/4

)

− E[|B1|]

= Θ

(∫ [

1 −
(

1 − k

n

)n19/28]
n

k11/4

)

− E[|B1|]

= Θ

(∫ n9/28

1

[
n19/28

(
k

n

)]
n

k11/4

)

− E[|B1|]

= Θ(n19/28) − Θ(n4/7) = Θ(n19/28).

We now bound E[Δ(S2)], which is E[Δ(F1)] − E[Δ(B1)]. Because B1 = F1 ∩
(S0 ∪ S1), E[Δ(B1)] ≤ E[Δ(S0) + Δ(S1)] = Θ(n19/28). Thus,
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E[|Δ(S2)|] = E[|Δ(C1)|] − E[|Δ(B1)|]

=

(
∑

k

[

1 −
(

1 − k

n

)n19/28]
n

k11/4

)

− E[|Δ(B1)|]

= Θ

(∫ [

1 −
(

1 − k

n

)n19/28]
n

k7/4

)

− E[|B1|]

= Θ

(∫ n9/28

1

[
n19/28

(
k

n

)]
n

k7/4

)

− E[|B1|]

= Θ(n85/112) − Θ(n19/28) = Θ(n85/112).

Note that S2 still has a polynomial expansion. So S3 will continue to grow.
As these bounds a highly concentrated, by repeating this argument a constant
number of times, to be formalized in the next subsection, we can show that the
expected number of vertices reachable from {1, 2} is Ω(n1−ε) for any ε > 0.

4.2 Crawling with Buffer of Size Constant Fraction of n

We now consider the case when the buffer is too small to contain all vertices of
in-degree 1. Let h be an integer such that the buffer is large enough to contain
all vertices of in-degree at least h − 1. We will use the following structure to
establish a lower bound on the core size: Let S0 = [1 : h]. Let the h-PYRAMID
of S0, denoted by PYRAMID(S0), be the following subgraph. For each i, let

Si = NEIGHBORS(Si−1) − ∪i−1
j=1Sj .

Then, PYRAMID(S0) is the subgraph induced by ∪iSi.
We will use the following lemma whose proof is straightforward.

Lemma 5. Suppose G = (V, E) is a directed graph and S0 is a subset of V
of size b. If there is a t0 such that St0 contains a subset C0 satisfying that the
indegree of every vertex in C0 in the induced subgraph G(C0) over C0 is at least
h, then PYRAMID(S0) is in the core if b is larger that the number of vertices
in G whose indegrees are h or more.

Below, we will show the h highest degree vertices form a clique. Furthermore,
if we start with a random set of b vertices, then with high probability, these h
vertices get in the buffer in the first step and will remain there. Again, we will
focus on α = 11/4. Let CLIQUE(h) be the event that the subgraph induced by
[1 : h] is a complete direct graph. We use [A] to denote that an event A is true.

Lemma 6. In a random (α, n)-BBPL graph G with α = 11/4,

Pr[[CLIQUE(h)]] ≥ 1 − e
−n1/7

h8/7 .
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Proof. The expected degree of vertex i is Θ
((

n
i

)4/7
)
. By a union bound,

Pr[[not CLIQUE(h)]] ≤
∑

i,j≤h

⎛

⎜
⎝1 −

(n
i )4/7

n

(
n
j

)4/7

n

⎞

⎟
⎠

n

≤
∑

i,j≤h

e
− n1/7

(ij)4/7
� e

−n1/7

h8/7

�

Note that if h < n1/8, then with high probability, [1 : h] induces a complete
directed clique.

Lemma 7. Let G = (V, E) be a random (α, n)-BPPL graph, for 2 < α < 3.
With high probability, there exists a constant c, such that for any h (not neces-
sarily a constant), for a set of b ≥ cn1−1/(α−1)h1+1/(α−1) log n randomly chosen
vertices S, the buffer-induced in-degrees of vertices 1,..., h are larger than h.

Proof. Note that at least 1, we have
∑

u∈S dα,n[u] ≥ b. The expected in-degrees
of vertices 1,..., h are bounded by

Θ

(
n1/(α−1)

n

) ∑

u∈S

dα,n[u] =
(n

h

)1/(α−1) b

n
≥ ch log n.

As this bound is highly concentrated, thus if c is large enough, with high
probability (e.g., 1 − n−Θ(c)), the buffer-induced in-degrees of vertices 1,...,h are
at least h. �

Lemma 8. In a random BPPL graph with parameters n and α = 11/4, the total
expected degrees of vertices [1 : h] is Θ

(
n4/7h3/7

)
.

Proof.
∑h

x=1

(
n
x

)4/7 = Θ(n4/7h3/7). �

We now analyze the size of pyramid.

Lemma 9. Let T0 be a subset of vertices of [1 : n] whose expected total degree is
Θ(nγ) and |T0| = o(nγ), for a constant γ. Suppose T0 has nγ random outgoing
edges chosen according to the BPPL distribution with parameters n and α =
11/4. Let T1 = NEIGHBORS(T0) − T0. Then, for any constant h ≥ 2,

E[|T1|] ≥ Θ
(
n(7/4)γ−3/4

)
.

Proof. Let T ′
1 = NEIGHBORS(T0). So, T1 = T ′

1−T0. For k ≤ n1−γ and h � nγ ,
the probability that a weight k vertex receives at least h edges from T0 is

(
nr

h

) (
k

n

)h

= Θ

(

min

(

(nγ)h

(
k

n

)h

, 1

))

(1)



688 R. Anderson et al.

Thus, as h ≥ 2, the expected size of T1 is

E[|T1|] = E[|T ′
1|] − E[|T ′ ∩ T0|]

= Θ

⎛

⎝
n1−γ
∑

1

n

k11/4 · nγh

(
k

n

)h
⎞

⎠ − E[|T ′ ∩ T0|]

= Θ

(

nhγ−h+1
∫ n1−γ

1
kh−11/4

)

− o(nγ) (2)

= Θ
(
nhγ−h+1n(1−γ)(h−7/4)

)
= Θ

(
n(7/4)γ−3/4

)
. �

This bound is independent of h. If γ = 4/7, then (7/4)γ − 3/4 = 1/4. We would
like to remark that if h = 1, then the calculation follows from what we did in
the previous subsection. The integral there was a constant but is not here. The
next lemma bounds Δ(T1), the expected total degrees of vertices in T1.

Lemma 10. Let T0 be a subset of vertices of [1 : n] whose total expected degrees
is Θ(nγ) and |T0| = o(nγ), for a constant γ. Suppose T0 has nγ random outgoing
edges chosen according to the BPPL distribution with parameters n and α =
11/4. Let T1 = NEIGHBORS(T0) − T0. Then, for any constant h ≥ 2,

E[Δ(T1)] ≥ Θ
(
n(3/4)γ+1/4

)
.

Proof. Let T ′
1 = NEIGHBORS(T0). We have T1 = T ′

1 − T0.

E[Δ(T1)] = E[Δ(T ′
1)] − E[Δ(T ′

1 ∩ T0)]

≥ Θ

⎛

⎝
n1−γ
∑

1

k
n

k11/4 · nγh

(
k

n

)h
⎞

⎠ − |Δ(T0)|

= Θ

(

nhγ−h+1
∫ n1−γ

1
kh−7/4

)

− Θ(nγ) (3)

= Θ
(
nhγ−h+1n(1−γ)(h−3/4)

)
=

(
n(3/4)γ+1/4

)
. �

We now apply Lemmas 9, 10 and 6, to prove the following theorem. Because we
need to apply these lemmas iteratively, we need to know the concentration of
the bounds in Lemmas 9 and 10. Recall the the original Hoeffding bounds states
that if Xi are independent random variables in [0, 1] (not necessarily binary) and
S =

∑
Xi, then

Pr [S > (1 + λ)E] ≤ e−λ2E[S]/2 (4)

Pr [S < (1 − λ)E] ≤ e−λ2E[S]/3. (5)

In Lemma 9, the bound of E [|T1|] is the sum of random 0 and 1 variables.
We use the standard Chernoff bound to show that the sum is exponentially
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concentrated, i.e., with probability 1−e−nΘ(1)
. The bound of E [Δ(T1)] in Lemma

10 is no longer the sum of random 0/1 variables or random variables whose value
is in the range of [0, 1]. We need the following restatement of Heoffding bound:
If Xi are independent random variables in [0, A] and S =

∑
Xi, then

Pr [S > (1 + λ)E] ≤ e−λ2E[S/A]/2 (6)

Pr [S < (1 − λ)E] ≤ e−λ2E[S/A]/3. (7)

To obtain a concentration bound, we observe that k in Equation (3) is in
the range of [1 : n1−γ ]. Thus, the bound in Equation (3) is the sum of random
variables in range [1 : n1−γ ]. So, as long as n1−γ � n(3/4)γ+1/4, we can use this
restatement of Hoeffding bound to an 1−e−nΘ(1)

concentration. In our argument
below that uses Lemma 10, we will have γ ≥ 4/7. Thus, all our bounds are
exponentially concentrated.

Theorem 1 (Size of Pyramid: h is a constant). Let G = (V, E) be a random
(α, n)-BPPL graph with α = 11/4. For any constant h, let S0 be a random set of
size b, where b = Θ

(
n

hα−1(1+1/(2h))

)
. Then, for any constant ε > 0, the expected

size of PYRAMID(S0) is Θ(n1−ε).

Proof. Because S0 is a random set of b elements, by Lemma 7, with high prob-
ability, S1 contains [1 : h + 1]. Let γ = 4/7 and β = 3/7, i.e., γ = 1 − β. By
Lemmas 9 and 10, we have that the expected value of |S2| and Δ(S2) are

[
Θ

(
n1− 7

4 β
)

, Θ
(
n1− 3

4 β
)]

(8)

By iteratively applying this analysis, for any constant t, the expected values of
|St| and Δ(St) are

[
Θ

(
n1− 7

4 ( 3
4 )

t−1
β
)

, Θ
(
n1−( 3

4 )
t
β
)]

Moreover, these random variables are highly concentrated. Thus, for t =
log4/3 ε�, we have E [|PYRAMID(S0)|] ≥ E [|St|] = Θ(n1−ε). �

By Lemma 1, if we set buffer size b = Θ
(

n
hα−1(1+1/(2h))

)
, with a sufficiently

large constant, every vertex that receives at least h votes will be in the buffer.

Theorem 2. For any constants 2 < α < 3, 0 < c < 1, and ε > 0, with high
probability, our crawling process with buffer size b = cn starting on a randomly
chosen set S0 of vertices of a random (α, n)-BPPL graph G has a core of expect
size Θ(n1−ε).

4.3 As Buffer Becomes Even More Smaller

When h is a function of n, e.g., h = nδ, we need to be a little more careful. But,
our analysis can still be extended to establish the following theorem similar to
Theorem 1.
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Theorem 3 (h: h = nΘ(1)). Let G = (V, E) be a random (α, n)-BPPL graph
with α = 11/4. For any δ ≤ 1/8 and ε > 0, letting h = nδ, if our crawling
process starting with a random set S0 of size b = Θ

(
n

hα−1(1+1/(2h))

)
has a core

with expect size Θ(n1− 7
4 δ−ε).

Proof. The main difference is that if h = nδ, then the estimation of the proba-
bility that a weight k vertex receives at least h edges from S0 is

Θ

((
enγ

h

)h (
k

n

)h
)

= Θ

(
(
enγ−δ

)h
(

k

n

)h
)

(9)

instead of Equation (1) used in the proof of Lemma 9. With the help of this
bound, the bound of Equation of 2 becomes

E[|S1|] = E[|S′
1|] − E[|S′ ∩ S0|] = Θ

(
n(7/4)γ− 3

4 δ−3/4
)

, (10)

and the bound of Equation of 3 becomes

E[Δ(S1)] = E[Δ(S′
1)] − E[Δ(S′

1 ∩ S0)] = Θ
(
n(3/4)γ− 7

4 δ+1/4
)

. (11)

Applying these bounds in the analysis of Theorem 1, setting γ = 1−β = 4/7,
the expected value of |S2| and Δ(S2) are

[
Θ

(
n1− 3

4 δ− 7
4 β

)
, Θ

(
n1− 7

4 δ− 3
4 β

)]
. (12)

By iteratively applying this analysis, if δ ≤ 1/8 (which ensures that Propo-
sition 6 holds), then for any constant t, the expected values of |St| and Δ(St)
are [

Θ
(
n1− 7

4 δ− 7
4 ( 3

4 )
t−1

β
)

, Θ
(
n1− 7

4 δ−( 3
4 )

t
β
)]

.

Again, these random variables are highly concentrated. Thus, the core is at
least n1−(7/4)δ−ε for all ε > 0, i.e., for large enough t, the expected values of |Tt|
and Δ(Tt) are [

Θ
(
n1− 7

4 δ−ε
)

, Θ
(
n1− 7

4 δ−ε
)]

.
�

4.4 Discussion

First of all, in our proof, we in fact consider the graph generated by the BBPL
process and remove the multiple edges and self-loops. If we use the self-loops
and multiple edges, we can further simplify the proof by starting with vertex 1
only, because its self-loop contribution is sufficient to keep it in the buffer. In
other words, we do not need to start with an h-clique.

Our analysis can be easily modified to apply to the following family of random
graphs: For vertex i, we add dα,n outward edges whose endpoints are chosen
according to dα,n. Again, in this model, we can remove self-loops and multiple
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edges. All our lemmas and theorems can be extended to this model. The analysis
can also be extended to the following model with exact in and out degree. Let
A and B be the array of length ||dα,n||1, in which there are dα,n(i) entries with
value i. Now randomly permute A and B, and add a directed edge from A(i) to
B(i). Again, this graph may have multiple edges and self loops.

5 Final Remarks on Experiments and Future Directions

This paper is a step towards modeling web processing with limited space and
time. Its objective is to provide some theoretical intuition indicating why table
cores of non-trivial size exist. However, the models we consider here, both in
terms of the crawling process and in terms of the graphical models, are in some
respects unlike these usually encountered in practice. We have conducted lim-
ited experiments with some other models of power law graphs, for example, as
discussed in [4] as well as some segments of web graphs. These experiments have
shown the existence of non-trivial stable cores.

As the next step of this research, we would like to extend our result to other
more realistic power-law models. The following are a few examples. (1) This is
a growth model. Start with one node and at time t do the following based on a
uniform three-way coins: (i) add a new node and connect it from a link from the
existing nodes according the out degree distribution (plus some constant); (ii)
add a new node and connect it to a link from the existing nodes according the
in degree distribution (plus some constant); and (iii) choose a vertex according
to the out degree and a vertex according to in degree, and insert this edge.
(2)Given two vectors, IN and OUT and an integer m. Repeat m times, at each
time, choose a vertex according to the out degree and a vertex according to
the in degree, and insert this edge. In this model, we would like to study the
graph based on the properties of IN and OUT , such as, IN and OUT follows
some kind of power law. For example, in this paper, we analyze a particular
(IN, OUT ) pair. We would like to analyze the process for a larger family of
(IN, OUT ) distributions. (3) Start with one node and at time t, insert one new
vertex and three edges. One out of the new vertex and one into the new vertex,
and of course, according the in or out degree. (4) Other models in Chung and
Lu’s book.
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