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Abstract

For d > 2 and all g > go(d) we give an efficient algorithm
to approximately sample from the g-state ferromagnetic
Potts and random cluster models on finite tori (Z/nZ)* for
any inverse temperature f > 0. This shows that the physical
phase transition of the Potts model presents no algorith-
mic barrier to efficient sampling, and stands in contrast
to Markov chain mixing time results: the Glauber dynam-
ics mix slowly at and below the critical temperature, and
the Swendsen—Wang dynamics mix slowly at the critical
temperature. We also provide an efficient algorithm (an
FPRAS) for approximating the partition functions of these
models at all temperatures. Our algorithms are based on
representing the random cluster model as a contour model
using Pirogov—Sinai theory. The main innovation of our
approach is an algorithmic treatment of unstable ground
states, which is essential for our algorithms to apply to all
inverse temperatures f.
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1 | INTRODUCTION

The Potts model is a probability distribution on assignments of g colors to the vertices of a finite graph
G.Foro € [q]"9 :={1,2, ... ,q}" 9 let

Ho(0) i= ) Oote, ey
(i)EE(G)

be the the number of bichromatic edges of G under the coloring o. The g-state ferromagnetic Potts
model at inverse temperature f > 0 is the probability distribution x£*™ on [¢]"® defined by

—BHg;(0)

e -

gotts‘.( 6) . S i ZgottS( ﬁ) . Z e ﬂHG(a)_ (2)
ZG (ﬁ) c€lq]V©®

The normalizing constant Zt2"(f) is the Potts model partition function. Since # > 0, monochromatic
edges are preferred. This is often referred to as the ferromagnetic Potts model.

In this article, we are interested in computational aspects of the Potts model. To this end, we view
72 and pge™ as functions and probability measures indexed by finite graphs G, and consider two
computational tasks associated to these objects. The first is the approximate counting problem: for
a partition function Zg and error tolerance € > (, compute a number Z so that e=¢Z < Zg < e°Z.
We say that such a Z is an e-relative approximation to Zg. The second is the approximate sampling
problem: for a probability measure p¢ and error tolerance e > 0, output a random configuration 6 with
distribution ji so that || — ugllrv < €. We say 6 is an e-approximate sample from ug.

Approximate counting and sampling algorithms can always be obtained by brute force in time
exponential in the size of the graph, and the interesting question is if more efficient algorithms exist.
To formalize this, a fully polynomial-time approximation scheme (FPTAS) is an algorithm that given
G and € > O returns an e-relative approximation to Zg and runs in time polynomial in [V(G)| and
1 /€. If the algorithm uses randomness it is a fully polynomial-time randomized approximation scheme
(FPRAS). A randomized algorithm that given G and € > 0 outputs an e-approximate sample from g
and runs in time polynomial in both |V(G)| and 1/e€ is an efficient sampling scheme. These notions
are standard in the study of the computational complexity of approximate sampling and counting, see
Section 1.1 below.

One of the main result of this article is the development of an FPRAS and an efficient sampling
scheme for the g-state Potts model on the discrete tori T¢ = (Z/nZ)? for all inverse temperatures
p > 0, provided ¢ is large enough as a function of d.

Theorem 1.1. For all d > 2 there exists qo = qo(d) such that for q > qo and all inverse temper-
atures [} > 0 there is an FPRAS and efficient sampling scheme for the g-state Potts model at inverse
temperature [} on the torus Td.

> exp(—0(n?™")), our approximate counting algorithm is
deterministic. We will comment on this further in what follows, see below Theorem 1.2.

In the next section we discuss the context and motivation behind Theorem 1.1. The remainder of the
introduction then turns to some relevant facts about the Potts model (Section 1.2), the closely related
random cluster model (Section 1.3), and a discussion of our proof strategy and the main challenges in
proving these results (Section 1.4).

If € is not too small, meaning ¢ >
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1.1 | Context and motivation: Approximation algorithms and computational phase transitions

For many statistical mechanics models like the Potts model exact computation of the partition function
has long been known to be #P-hard, even for restricted classes of graphs and parameters. In particular,
if P#NP, this task cannot be performed in polynomial time. Current research therefore is focused on
approximate counting.

For some special models (the ferromagnetic Ising model [28], the monomer-dimer model [27]),
there is an FPRAS for all graphs and all parameters. For other models, the computational complexity
of approximate counting and sampling depends on the class of graphs and on the parameters of the
model. These models exhibit computational phase transitions. We now briefly introduce a well-known
example of such a transition. Recall that a subset 7 C V of vertices of a graph G = (V, E) is indepen-
dent if no two vertices in / are joined by an edge. Given 4 > 0, the independent set (or hard-core)
model with fugacity 4 is the probability distribution on independent sets that chooses I with prob-
ability proportional to A"l. An important series of results in the field of approximate counting has
established the existence of a computational phase transition for the independent set model. More pre-
cisely, restrict the set of input graphs to be those of maximum degree A, and let 4. := ((AA__I;: . Then
there exists an FPTAS and an efficient sampling scheme if 1 < A, [42], while there does notif A > A,
unless NP=RP [18, 38, 39]. The parameter 4. also appears in statistical physics. Namely, it is the point
where the independent set model has a phase transition on the A-regular tree in the sense of unique-
ness (4 < 4.) and non-uniqueness (4 > A.) of Gibbs measures. The hardness result is obtained by a
reduction to MAX-CUT, an NP-hard problem.

A third class of model lies between the other two: those for which no FPRAS is known in
general, but no computational hardness is known either. An important example of such a model is
the independent set model when one restricts the inputs to bipartite graphs. Counting independent
sets in bipartite graphs is called #BIS, and many approximate counting problems of interest turn
out to be equivalent to the existence of an FPRAS for #BIS, see [16]. It has been conjectured that
no FPRAS exists for #BIS. The connection to the Potts models, and hence the present work, is as
follows. Fix g > 3. The existence of an FPRAS for the g-state Potts model on graphs of maxi-
mum degree A at large enough inverse temperature f would imply the existence of an FPRAS for
#BIS [19, Theorem 2]. The conjecture, therefore, is that no such FPRAS for the g-state Potts model
exXists.

Unitil recently the construction of efficient approximate counting and sampling schemes for sta-
tistical physics models was largely restricted to the uniqueness regime of the respective models, for
example, via Markov-chain mixing or correlation decay arguments. Notable exceptions include the
Ising and monomer-dimers models and special classes of graphs with dualities, for example, planar
duality [5, 20, 21, 41]. Recently, efficient algorithms in non-uniqueness regimes have been devel-
oped. These algorithms are primarily based on the observation that classical tools from mathematical
physics, the cluster expansion and Pirogov—Sinai theory, can be used to obtain efficient algorithms
deep inside the non-uniqueness regime on lattices [25]. Further works [11, 13, 26] extended the use
of the cluster expansion to obtain algorithms for other classes of graphs and models for parameters,
again deep inside non-uniqueness regimes.

As will be discussed in Section 1.4 below, our proof of Theorem 1.2 relies on a significant extension
of the Pirogov—Sinai methodology of [25]. Note that Theorem 1.2 completely rules out the existence
of a computational phase transition for the g-state Potts model on tori (Z/nZ)¢ when g > 1. The
Potts model on tori has a uniqueness/non-uniqueness phase transition in the infinite volume limit and
hence our result shows that any relation between computational and physical phase transitions for the
Potts model is subtle, in that it sensitive to the class of graphs being considered. It is important to note
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that this potential sensitivity is not new, as it also follows from algorithmic results [28] concerning the
Ising model. Our contribution, therefore, is a proof of this subtlety in a less specialized context, by
fairly robust methods, and for a problem directly related to #BIS. While the tori we consider are rather
special graphs, we view them as a starting point for understanding potential barriers to the existence
of an FPRAS for the Potts model, and hence to understanding the existence or non-existence of an
FPRAS for #BIS.

After the appearance of the extended abstract of this work in [6], results concerning all-temperature
algorithms for the Potts model on expander graphs appeared [24]. The methods of [24] are different
than those of the present paper, as the geometry of expander graphs allows one to avoid the use of
Pirogov—Sinai theory and work with simpler polymer models instead.

1.2 | The Potts model on Z¢

The Potts model is known to exhibit a phase transition on Z¢ when d > 2, and when ¢ is sufficiently
large the phase diagram has been completely understood for some time [31, 32]. For large g there is a
critical temperature f. = f.(d, q) satisfying

po="22 1 0g19), 3
such that for § < f. there is a unique infinite-volume Gibbs measure, while if f > f. there are ¢
extremal translation-invariant Gibbs measures. Each of these low-temperature measures favor one of
the g colors. At the transition point f = f. there are g+1 extremal translation-invariant Gibbs measures;
g of these measures favor one of the g colors, and the additional measure is the “disordered”” measure
from f < f.. We note that the phenomenology of the model is g-dependent [14]. The preceding results
require ¢ large as they use ¢! as a small parameter in proofs.

The existence of multiple measures in the low-temperature phase is reflected in the dynamical
aspects of the model. While Glauber dynamics for the Potts model mix rapidly at sufficiently high tem-
peratures, they mix in time exp(@(nd‘l)) when § > f. [8, 10]. Even the global-move Swendsen—Wang
dynamics take time exp(®@(n¢~")) to mix when g = f. [8].

1.3 | Random cluster model
Given a finite graph G = (V(G), E(G)) the random cluster model is a probability distribution on edge
sets of G given by

ZE(p.q)

uREA) 1= ,  ACEQ), )

where ¢(G,) is the number of connected components of the graph G4 = (V(G),A) and

Z(p,g) = Y pHI1L = p)EOI-MI G -
ACE(G)

is the random cluster model partition function.

The Potts model and the random cluster model can be put onto the same probability space via the
Edwards—Sokal coupling (see, e.g., [14]). We recall this coupling in Appendix A; one consequence is
the relation, for # > 0 and integer g > 2,

ZgottS(ﬁ) — eﬁ|E(G)|Z§C(1 - e_ﬂa 6]). (6)
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With the parameterization p = 1 — ¢~# the random cluster model on Z¢, d > 2, also has a criti-
cal inverse temperature fi. = fi.(g, d) that satisfies (3) and that coincides with the Potts critical inverse
temperature for integer g. For f < f. the random cluster model has a unique infinite volume measure
(the disordered measure), while for f > f. the ordered measure is the unique infinite volume mea-
sure. For f = [, the two measures coexist, in the sense that there are multiple infinite-volume Gibbs
measures, with one corresponding to the ordered and one corresponding to the disordered measure.

Our counting and sampling algorithms for the Potts model extend to the random cluster model on
finite subgraphs of Z¢ with two different types of boundary conditions. To make this precise requires
a few definitions. Let A be a finite set of vertices of Z¢ and let G, be the subgraph of Z¢ induced by
A. We say G, is simply connected if G, is connected and the subgraph induced by A = Z4 \ A is
connected. The random cluster model with free boundary conditions on Gy is just the random cluster
model on the induced subgraph G, as defined by (4). The random cluster model with wired boundary
conditions on G is the random cluster model on the (multi-)graph G’y obtained from G by identifying
all of the vertices on the boundary of A to be one vertex; see [ 14, Section 1.2.2] for a formal definition.
We refer to the Gibbs measures and partition functions with free and wired boundary conditions as

s, ut, 7L, 72 Explicitly,

7, = Z PAI(L = ) FGOI-IA] 4G, sifidl N
ACE(Gy)

Zy = Z PAI(1 — p)IEGVI-IAl (G )
ACE(G),)

where ¢(G,) is the number of connected components of the graph (A, A) and ¢(G',) is the number of
components of the graph (A’, A) in which we identify all vertices on the boundary of A.

Theorem 1.2. For d > 2 there exists qo = qo(d) so that for q > qo the following is true.

For i > f. there is an FPTAS and efficient sampling scheme for the random cluster model on all
finite, simply connected induced subgraphs of 74 with wired boundary conditions.

For f < f. there is an FPTAS and efficient sampling scheme for the random cluster model on all
finite, simply connected induced subgraphs of Z° with free boundary conditions.

Theorem 1.2 yields an FPTAS, while Theorem 1.1 gave an FPRAS for the torus. The reason for
this is that our Pirogov-Sinai based methods become more difficult to implement on the torus if the
error parameter € is smaller than exp(—O(nd ~1)). The algorithm for Theorem 1.1 circumvents this by
making use of the Glauber dynamics for this range of e. This is possible because, despite being slow
mixing, the Glauber dynamics are fast enough when given time O(e~!) for e this small by [8]. By using
Glauber dynamics in a similar manner we could obtain an FPRAS for the random cluster model on T¢.

We note that our methods are likely capable of handling boundary conditions other than those
described above, but we leave an investigation of the full scope of their applicability for the future.

1.4 | Proof overview

The results of this article are based on non-trivial extensions of the recent work [25]. To discuss the
new ingredients, we first recall two key ideas from [25]. The first, which has since gone on to be
used in many subsequent works [11-13, 26, 33], is the notion of a polymer model algorithm. We
discuss this method in a self-contained way in Section 2 below; it is based on the well-developed
ideas of polymer models and cluster expansion from mathematical physics [22, 30]. In [25] this was
combined with Barvinok’s interpolation method [2] to devise efficient algorithms. Polymer model
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algorithms are efficient algorithms for estimating the partition function of low-density independent set
models. The power of the method is that it can handle independent sets on very general graphs with
vertex-dependent activities. Many problems of interest can be rephrased in terms of independent set
models of this type.

The second key idea from [25] for this work is the algorithmic use of Pirogov—Sinai theory. An
important ingredient for this is the notion of a ground state. Formally, for the Potts models, the ground
states are the colorings ¢ of Z¢ that minimize Hz.(c). Rigorously, the ground states are colorings o for
which any finite perturbation o’ satisfies H(6")—Hg(o) > 0as G 1 Z¢; since ¢’ is a finite perturbation
this sequence is constant for large enough volumes G. The ground states of the ferromagnetic Potts
model are the ¢ monochromatic colorings.

This notion of a ground state is meant to capture the intuition that when f > 1, one expects a typical
configuration of the Potts model to look essentially like one the ground states, with some small local
deviations. Rigorously verifying this picture is non-trivial, and is part of the subject of Pirogov—Sinai
theory. The key output of the theory is a convergent expansion for the logarithm of the partition function
of the model with monochromatic boundary conditions, where the terms of the expansion correspond
to local deviations from the given ground state. The expansion has a recursive flavor: the terms of the
expansion are themselves given by ratios of partition functions with different boundary conditions.
This recursion can be traced back to the fact that local deviations can have internal structures: there
could be a red island inside of a blue lake inside of a red sea. See Figure 1. The algorithms of [25]
made use of the symmetry of the ground states of the Potts model in handling this recursion, the key
point being that symmetry implies (when f > 1) the deviations are rare enough that their contribution
to the relevant partition functions can be controlled by a convergent cluster expansion.

Theorems 1.1 and 1.2 concern not just low temperatures, but all temperatures. Pirogov—Sinai theory
has been developed for the Potts model at all temperatures when g > 1, and for doing this it is very
helpful to use the random cluster representation [32]. Our algorithms rely on this, and we follow the
sophisticated approach from [8]. Algorithmically, however, the reliance on the random cluster model
creates a key difficulty. As discussed above, in the Potts model representation, the g ground states
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FIGURE1 A g = 3 Potts model configuration depicting nested regions of constant color.
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FIGURE 2 Two random cluster model configurations. The configuration on the left is a perturbation of the empty set of
edges, and the configuration on the right a perturbation of the full set of edges.

(one for each color) are completely symmetric. These ground states were defined with > 1 in mind,
while applying Pirogov—Sinai theory at all temperatures requires having a ground state corresponding
to the typical behavior when f < 1 as well. The random cluster representation achieves this naturally:
it has two ground states, the ordered (full set of edges) and disordered (empty set of edges) ground
states. These ground states are not symmetric; the former captures the low-temperature behavior and
the latter the high-temperature behavior. See Figure 2.

In Pirogov—Sinai theory ground states are categorized based on free energies of truncated mod-
els, as is discussed in [29, Section 1.5]. For a given choice of parameters, ground states minimizing
the truncated free energy are stable while other ground states are unstable. In the Potts representation
all ground states are stable by symmetry, and this was exploited in the low temperature algorithms
in [25]. In the random cluster representation, one of the ground states may well be unstable (in
fact only at § = f. are both ground states stable). Thus while working with the random cluster
representation gives us a convergent cluster expansion at all temperatures, it also necessitates an
algorithmic approach that accommodates unstable ground states. The next paragraph discusses our
algorithmic approach. We believe this approach could be adapted to other models with unstable ground
states, but for the sake of concreteness we restrict our discussion to the setting of the random cluster
model.

To see the issue that unstable ground states create for algorithms, recall that when f > 1 the
intuition is that most configurations look like the ordered ground state, with local deviations that
look like the disordered ground state. Since the disordered ground state is not stable at low temper-
atures, it does not suppress local deviations that flip back to the ordered ground state. This prevents
us from analyzing the recursive structure of the Pirogov—Sinai expansion by using polymer model
methods: the polymer model expansion in an unstable ground state does not have a convergent expan-
sion. To circumvent this, we use tools from [8] to establish that inside of any unstable deviation there
will be a further deviation back to the stable ground state. This flip back to the stable ground state
happens rapidly enough that we can use brute-force methods. Since there may be many unstable devi-
ations, it is also important for us to control their total volume, and again we use tools from [8] to
do this.

As is clear from this discussion, this articles makes significant use of the methods developed in [8,
25]. For the ease of the reader who wishes to see the proofs of results we use from [8] we have largely
stuck to the definitions presented in that article, and have made careful note of the situations in which
we have chosen alternative definitions that facilitate our algorithms. To complement the discussion
above, we conclude this section with an outline of our arguments along with pointers to the technical
content of the article.
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1. In Section 2, we briefly recall the notion of a polymer model and convergence criteria for the
cluster expansion, and recall from [25] how this can be used for approximation algorithms.
A key improvement upon [25] is that we work directly with the cluster expansion rather than
using Barvinok’s method [3]. This is essential, as Barvinok’s method relies on the existence
of a zero-free region. In the Potts model there cannot be a zero-free region uniformly in the
volume near f., precisely because this is the point at which a phase transition occurs. In this
section, we also apply the polymer model algorithm to the random cluster model at very high
temperatures, meaning f < f, .= 3logg

2. In Section 3, we first recall the tools from Pirogov—Sinai theory developed in [8] for the random
cluster model. We then use these tools to establish the necessary ingredients for an algorithmic
implementation of the method.

3. Section 4 contains estimates for the contour model representation derived in Section 3. We
prove some consequences of estimates from [8] that are needed for our algorithms. As dis-
cussed above, the key additional estimates concern how unstable contours rapidly “flip” to
stable contours, which are essential for our algorithms to be efficient.

This section focuses on the most interesting case of f§ > fl.. The case f; < f < f., which is
very similar to f > f. and again uses estimates from [8], is discussed in Appendix B.

4. In Section 5, we present our approximate counting algorithms. The broad idea is to use the
inductive Pirogov—Sinai method of [25], but with significant refinements to deal with the pres-
ence of an unstable ground state. Similar refinements are then used in Section 6 to develop
sampling algorithms.

We remark that it may be possible to combine results and proof techniques from [1, 15, 35] to
prove that the Glauber dynamics mix rapidly on the torus and sufficiently regular subsets of Z¢ for all
p < P., which would yield a much faster sampling algorithm than the one we have given here. We are
not aware, however, of any existing statement in the literature which would directly imply rapid mixing
in the whole range f < f., and leave this as an open problem. Further open problems can be found in
the conclusion of this article, Section 7.

2 | POLYMER MODELS, CLUSTER EXPANSIONS, AND ALGORITHMS

This section describes how two related tools from statistical physics, abstract polymer models and the
cluster expansion, can be used to design efficient algorithms to approximate partition functions.

An abstract polymer model [22, 30] consists of a set C of polymers, with each polymer y € C
equipped with a complex-valued weight w, and a non-negative size ||y ||. The set C also comes equipped
with a symmetric compatibility relation ~ such that each polymer is incompatible with itself, denoted
y ~ y. Let G denote the collection of all sets of pairwise compatible polymers from C, including the
empty set of polymers. The polymer model partition function is defined to be

zc,w) := Y [wr- 9)

reg yer

In (9) w is shorthand for the collection of polymer weights.

Let I" be a non-empty tuple of polymers. The incompatibility graph Hr of T has vertex set I" and
edges linking any two incompatible polymers, that is, {y,y’} is an edge if and only if y ~ y’. A
non-empty ordered tuple I' of polymers is a cluster if its incompatibility graph Hr is connected. Let
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G° be the set of all clusters of polymers from C. The cluster expansion is the following formal power
series for log Z(C, w) in the variables w,:

log Z(C,w) = )" pHP) [ [w,- (10)

r'ege yel

In (10) ¢(H) denotes the Ursell function of the graph H = (V(H), E(H)), that is,

1
H = —1 IAl.
= a2y,

(V(H).A) connected

For a proof of (10) see, for example, [17, 30]. Define |[']] := Zyef‘ ll7]l, and define the truncated
cluster expansion by

ToC,w) i= Y ¢HD)] [y

Fege yell
|7 <m

Henceforth we will restrict our attention to a special class of polymer models defined in terms of
a graph G with maximum degree A on N vertices. Namely, we will assume that each polymer is a
connected subgraph y = (V(y), E(y)) of G. The compatibility relation is defined by disjointness in G:
y ~y iff V(y) n V(") = @. We write |y| for |V(y)|, the number of vertices in the polymer y.

A useful criteria for convergence of the formal power series in (10) is given by the following
adaptation of a theorem of Kotecky and Preiss [30].

Lemma 2.1. Let G be a graph of maximum degree A > 2 on N vertices. Suppose that polymers are
connected subgraphs of G that contain at least two vertices. Suppose further that for some b > 0 and
ally € C,

vl = blE), (1D

4 +1loc A
Iw, | Sexp(— (% +3) ||y||). (12)

Then the cluster expansion (10) converges absolutely, and for m € N,
|T0(C,w) —log Z(C, w)| < Ne™™™ . (13)

Moreover, if instead all polymers are connected, induced subgraphs of G, and for some b > 0 and
ally € C,

Il = blyl, (14)

34+ 1loc A
Iw, | Sexp(— (%H) ||y||), (15)

then the same conclusion holds.

This lemma implies that if conditions (11) and (12) hold, then exp(7,,(C,w)) is an e-relative
approximation to Z(C, w) for m > log(N/e)/3.
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Proof. ~ We append to C a polymer y, for each v € V(G) consisting only of that vertex, with size
lv| = 1 and w, = 0. By definition, y, is incompatible with every other polymer that contains v. Then

Z|wy|e|E(7>l+3”Y” < Zewme—(%wu
y=ry Y=Yy
< ZelE(}’)le—(4+log DIER)|
rYy

S Z(eA)ke—(3+10g A)k,
k>1

where the first inequality is by (12), the second by (11), and the third is by bounding the number of
connected subgraphs of G with k edges that contain v by (eA)* [7]. This yields

Z|wy|eIE(y)|+3|IYII < Ze—Zk <1/2. (16)

Y=ry k>1

Moreover, under the second assumption, that all polymers are connected induced subgraphs, we
have a similar bound, with |y| in place of |E(y)|:

3w, LI < Sk < 1, (17)

)t k>1

where we have used that the number of connected induced subgraphs on k vertices that contain v is at
most (eA)* [7].
Now fix a polymer y. By summing (16) over all v € y we obtain

3wy [l ZH T < 1172 < |E ). (18)

Y~y

By applying the main theorem of [30] with a(y) = |E(y)|, d(y) = 3||y|| we obtain that the cluster
expansion converges absolutely. Moreover, we also obtain that

2 [eHD [ [ M < 1, (19)

rege yel’

I'sv

where the sum is over all clusters that contain a polymer containing the vertex v. By using this estimate,
restricting to [|I'|| = m, and summing over all v € V(G) one obtains

> |EHD] [w| < Ne", (20)
rege yel’
IT|[=m
which is (13).
The same argument works under the second assumption by taking a(y) = |y|. n

Because clusters are connected objects arising from a bounded-degree graph, the truncated cluster
expansion can be computed efficiently. Recall that N = [V(G)|.
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Lemma 2.2. Suppose the conditions of Lemma 2.1 hold. Then given a list of all polymers y of size
at most m along with the weights w, of these polymers, the truncated cluster expansion T,,(C,w) can
be computed in time O(N exp(O(m))).

Proof. This is [25, Theorem 6]. n

The next lemma says that, for the purposes of approximating a polymer partition function, it is
sufficient to have approximate evaluations w, of the weights w,.

Lemma 2.3. Letv : C — [0, c0) be a non-negative function on polymers such that v(y) < ||y||*
Suppose 0 < € < N~', and let m = 10g(8/€)/3. Suppose the conditions of Lemma 2.1 hold and that
forall y € Cwith ||y|| £ m, W, is an ev(y)-relative approximation to w,. Then exp(T,,(C,W)) is an
Ne /4-relative approximation to Z(C,w).

Proof.  Using the definition of m and applying Lemma 2.1, we have
|log Zg(C,w) — T(C,w)| < Ne/8,
so by the triangle inequality it is enough to show that
| T0n(C, W) — Tu(C,w)| < Ne/8. (21)

Define r, by logw, =logw, + r,. To prove (21), note the identity

Tn(C, ) = Tnu(C,w) = Y dHD[ ], - [exp(Zr,,) - 1] :

rege(G) yel’ yell
[Tl <m

Our hypotheses imply |r,| < ev(y), and hence by the triangle inequality we obtain

| T(C. ) = Tu(Cow) < Y (exp(Zevm) - 1) $HO [ |.

Tege(G) yel’ yel’
IT]|<m

where we have used the elementary inequality e’ — 1| < e® — 1 when |a| < b to bound the term in
square brackets. Since v(y) < ||y||? this yields, after ordering the sum over clusters according to their
size k,

m—1 m—1
ITu(C. ) = Tu(Cow) < Y (explek®) — 1) Y |pHD[Twy| < Y (expler?) — Ve,
k=1 reg®(6) yer k=1
ITlI=k

The last inequality follows from the convergence of the cluster expansion (see (20) in the proof
of Lemma 2.1). Since ¢ < N-! we can bound ¢ — 1 by 2ek?, and (21) follows since
Zkzl ke * < 1/16. (]

Putting Lemmas 2.1-2.3 together we see that the partition function Z(C, w) can be approximated
efficiently if

95U92I7 suowwo) aAieas) ajqedijdde ayy Aq pautanob aie sapiie YO ‘@sn Jo sajni 1oy Aeiaqi] suljuQ A9jipn Uo (suonipuod-pue-swidl/npakajaiadAxoidqlwod-Aem-Aieiqipuijuo//:sdiy) suonipuo) pue
Swd) dY3 9935 "[£202/L0/22] uo Aieiqry suljuo A3ip ‘qeq [euoneN Asjaduag aduaimer eruloyied Jo Alun Ag "LELLZ eS/Z00L 0L/10p/npakajiaqAxoldalwod-Aaim-Aieiqipuijuo//:sdiy woiy papeojumoq ‘L ‘2202 '8LrZ860L



BORGS ET AL. Wl LEY 141

1. conditions (11) and (12) hold,

2. polymers of size at most m = O(logN/e) can be enumerated efficiently, that is, in time
polynomial in N and exponential in m, and

3. the polymer weights w, can be approximated efficiently, that is, in time polynomial in the size
of y.

2.1 | High temperature expansion

This section explains how the polymer model algorithm of the previous section yields efficient count-
ing and sampling algorithms for the random cluster model when g is sufficiently large and f < f, =
%. This use of the polymer model algorithm also serves as a warm-up for the more sophisticated
contour-based algorithms we will use in later sections when f > f,.

In fact, the simpler setting of f < fi, allows for greater generality: we will derive an algorithm that

applies to the random cluster model on any graph G of maximum degree at most 2d.

Theorem 2.4. Suppose d > 2 and q = q(d) is sufficiently large. Then for } < fij, there is an FPTAS
and efficient sampling scheme for the Potts model and the random cluster model withp = 1 — e~ on
all graphs of maximum degree at most 2d.

Proof. Let G = (V(G), E(G)) be such a graph. We define polymers to be connected subgraphs of G
with at least two vertices. As per our convention, polymers are compatible if they are vertex disjoint,
and |y| = [V(y)|. We set ||ly|| = |E(y)|, and define the weight of a polymer y to be

livll
w, 1= (ll_’p) g = (f — ligi=lrl (22)

Let C(G) be the set of all polymers on G, G(G) be the collection of all sets of pairwise compatible
polymers from C(G), and let

26 = ) []w (23)
reg(G) yel'

be the corresponding polymer model partition function. Then we have the identity
Z§5(p.q) = (1 = p)H D1V E(G). 24)

The relation (24) follows by extracting a common prefactor of (1 — p)IF@IgIV@! from the random
cluster partition function. To see this relation it may help to temporarily allow polymers that consist
of a single vertex; since these receive weight one by (22) it is equivalent to remove these from the set
of polymers.

Condition (11) holds with & = 1 since ||y|| = |E(y)|. We will show that condition (12) holds if
f < pr and g is sufficiently large as a function of d. Suppose there is a go such that for all y, all f < f,
and all ¢ > go

wy, < C—I[Vll' (25)

Then if C = C(d) > 0 is large enough, (12) holds. Since b = 1, C = exp(7 + log 2d) suffices, and
we fix C to be this value hereon. We now verify (25) in three steps, by considering polymers grouped
according to the value of k = ||y]|.

95U92I7 suowwo) aAieas) ajqedijdde ayy Aq pautanob aie sapiie YO ‘@sn Jo sajni 1oy Aeiaqi auluQ A9jipn Uo (suonipuod-pue-swidl/npaAajadiadAxoidqlwod-Aem-Aieiqipuijuo//:sdiy) suonipuo) pue
Swd) dY3 9935 "[£202/L0/22] uo Aieiqry suljuo A3ip ‘qeq [euoneN Asjaduag aduaimer eruloyied Jo Alun Ag "LELLZ eS/Z00L 0L/10p/npakajiaqAxoldalwod-Aaim-Aieiqipuijuo//:sdiy woiy papeojumoq ‘L ‘2202 '8LrZ860L



142 Wl LEY BORGS ET AL.

1. For k > 5d we will use the fact that |y| > [|y||/d since every edge is incident to two vertices and
every vertex is incident to at most 2d edges. Then using the fact that f < f, we have

k

w, < glef — g™ < g'~% < g, (26)

which is at most C-I"l if g > C2%4,
2. Ford < k < 5d, we will use the fact that |y| > % + 1/2||7|| since the number of edges in a graph
on r vertices is at most (; ) Then we have

) i, 3¢
Wy < qqiiq iV < @itV @7)

where ¢ = k/d and where we use the fact that d > 2 and ¢ > 1. Then since % + % —24/c £ —%
for ¢ € [1, 5], we have

wy < g1/, (28)
which is at most C~lI"l if g > €%,
3. Forl <k <d,since |y| > 2, we have
w, <gl(ef - D <qgleP < g7, (29)

which is at most C~I"Il provided g > C*.

Thus taking go > exp(25d(7 + log 2d)) suffices. Lemmas 2.1 and 2.2 then give an FPTAS for
computing the random cluster partition function ZxC(1 —e~*, g) for all graphs of maximum degree 2d,
as enumerating subgraphs of size m in a bounded degree graph takes time exp(Q(m)), and computing
the weight functions only requires counting the number of edges and vertices in each subgraph.

The efficient sampling scheme follows from [25, Theorem 10]. Counting and sampling algo-
rithms for the random cluster model can be converted into algorithms for the Potts model via the

Edwards—Sokal coupling described in Appendix A. "

Proof of Theorems 1.1 and 1.2 for p <.  Theorem 1.1 follows immediately from Theorem 2.4 since
T4 is 2d-regular.

By (3), fn < [f. when g is large enough. Thus Theorem 1.2 requires we provide approximate
counting and sampling algorithms for free boundary conditions. Since induced subgraphs of Z¢ have
degree bounded by 2d, the result follows by Theorem 2.4. n

3 | CONTOUR MODEL REPRESENTATIONS

Contour models refer to a class of polymer models that arise in Pirogov—Sinai theory [37]. For a given
spin configuration, contours represent geometric boundaries between regions dominated by different
ground states; the precise definition for the purposes of this article will be given below. This section
describes an important contour model representation for the random cluster model on the torus T¢
that is the basic combinatorial object in our algorithms. This contour representation was originally
developed for obtaining optimal lower bounds on the mixing time for Glauber and Swendsen—Wang
dynamics [8]. In addition to recalling the construction from [8] this section also develops the additional
ingredients necessary for algorithmic applications of the representation.

95U92I7 suowwo) aAleas) ajqedijdde ayy Aq pautanob aie sapiie YO ‘@sn Jo sajni 1oy Aeiaqi] suljuQ A9jipn Uo (suonipuod-pue-swidl/npaAajaiadAxoidqlwod-Aem-Aieiqipuijuo//:sdiy) suonipuo) pue
Swd) dY3 935 "[£202/L0/22] uo Aieiqry suljuo A3ip ‘qeq [euoneN Asjaduag dduaimer eruloyied Jo Alun Ag 'LELLZ eS/Z00L 0L/10p/npakajiaqAxoldal wod-Aaim-Aieiqipuijuo//:sdiy woiy papeojumoq ‘L ‘220 '8LrZ860L



BORGS ET AL. Wl LEY 143

3.1 | Continuum embedding

The contour model representation from [8] is based on the natural embedding of the discrete torus
Td = (Z/nZ)" of side-length n € N into the continuum torus 7¢ := (R/nR). This subsection recalls
the basic definitions, and explains how they can be rephrased in terms of discrete graph-theoretic
notions. !

In what follows we abuse notation slightly and write T¢ for the graph (T4, E), where E is the edge
set of the discrete torus. We will follow the convention that bold symbols, for example, V, denote
subsets of T¢, while objects denoted by non-bold symbols like V reside in T%. Thus each vertex v € T4
is identified with a pointv € T¢, and we will identify each edge ¢ = {u,v} € E with the unit line
segment e C T¢ that joins u to v. We will also drop T¢ from the notation when possible, for example,
E for E(T?).

Let Q = 2F denote the set of configurations of the random cluster model on T¢. Let¢ C T¢ denote
a closed k-dimensional hypercube with vertices in T¢ for some k = 1, ... ,d. We say a hypercube ¢ is
occupied with respect to A € Q if for all edges e with e C ¢, e is in A. Define

A= {x IS I‘,lethere exists ¢ occupied s.t. de(x,¢) < %} , 30)
where d, is the ¢ -distance, and the distance from a point to a set is defined in the standard way:
de(x,¢) = infye, do(x,y). Thus A is the closed 1/4-neighborhood of the occupied hypercubes of A.
The connected components of the (topological) boundary dA of the set A are the crucial objects in what
follows. Since each connected component arises from an edge configuration in €2, it is clear that the set
of possible connected components is a finite set. As the connected components of dA are continuum
objects, it may not be immediately apparent how to represent them in a discrete manner. We briefly
describe how to do this now.

Let %']I‘,”f denote the graph (%Z /nZ)?; as a graph this is equivalent to the discrete torus (Z/(2n)Z)".
The notation %'H‘;{ is better because we will embed %'H‘ﬂ in T¢ such that (i) 0 coincides in T¢ and %Tf{ .
and (ii) the nearest neighbors of () in %T,‘f,' are the midpoints of the edges e containing 0 in T¢.?

An important observation is that A can be written as a union of collections of adjacent closed
d-dimensional hypercubes of side-length 1/2 centered at vertices in %'H‘,‘f, where two hypercubes are
called adjacent if they share a (d — 1)-dimensional face. Adjacency of a set of hypercubes means the set
of hypercubes is connected under the binary relation of being adjacent. By construction the connected
components of A correspond to the connected components of the edge configuration A.

The boundary dA of A is just the sum, modulo two, of the boundaries of the hypercubes whose
union gives A. These boundaries are (d — 1)-dimensional hypercubes dual to edges in %’]I‘,‘f ; here dual
means that the barycenter of the (d — 1)-dimensional hypercube is the same as barycenter of the edge in

*
%Tﬂ . The (d — 1)-dimensional hypercubes that arise from this duality are the vertices in (%Tﬁ) , the

graph dual to %Tﬂ ; two vertices in (%Tﬁ )* are connected by an edge if and only if the corresponding
(d — 1)-dimensional hypercubes intersect in one (d — 2)-dimensional hypercube. The preceding
discussion implies dA can be identified with a subgraph of %Tﬁ *.

In the sequel we will discuss components of dA as continuum objects; by the preceding discus-

*
sion this could be reformulated in terms of subgraphs of ( %'H‘,‘{) . In Appendix C, we show that the

!'This continuum construction allows for tools from algebraic topology to be used. We have chosen to follow the continuum
terminology to allow the interested reader to easily consult [8].
2More formally, since Z¢ C %Z" C R4, we obtain a common embedding of %'Jl‘,‘j and T¢ in T¢.
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computations we perform involving components of dA can be efficiently computed using their
representations as subgraphs of (%T,‘,’ )*.

3.2 | Contours and interfaces

An important aspect of the analysis in [8] is that it distinguishes topologically trivial and non-trivial
components of dA. To make this precise, fori = 1, ... ,d we define the ith fundamental loop L; to be
the set {y € T¢ ly; =1 forall j # i}. The winding vector N(y) € {0, 1}¢ of a connected component
y € 0A is the vector whose ith component is the number of intersections (mod 2) of y with L;.

Definition 1. Let A € Q be an edge configuration.

1. The set of contours I'(A) associated to A is the set of connected components of dA with winding
vector 0.

2. The interface network S(A) associated to A is the set of connected components of dA with non-zero
winding vector. Each connected component of an interface network is an interface.

Without reference to any particular edge configuration, a subset y € T¢ is a contour if there is an
A € Q such that y € I'(A). Interfaces and interface networks are defined analogously.

Since each fundamental loop intersects each (d — 1)-dimensional face of a hypercube centered on
%Tﬁ exactly zero or one times, we have the following lemma, which ensures contours can be efficiently
distinguished from interfaces.

Lemma 3.1. Suppose y € 0A is comprised of K (d — 1)-dimensional faces. Then the winding vector
of y can be computed in time O(nk).

Proof. Fixi € {1,2, ... ,d}. Each fundamental loop L; has length O(n), and hence the set F; of
faces that have non-trivial intersection with Z; has cardinality |F;| = O(n). Given the list of faces in y
we can compute the ith component of the winding vector by (i) iterating through the list of faces of y
and adding one each time we find a face in Fj, and (i1) taking the result modulo two. [

The connected components of T¢ \ dA are subsets of either A or T¢ \ A. In the former case we call
a component ordered and in the latter case disordered. We write Aqq (resp. Ag;s) for the union of the
ordered (resp. disordered) components associated to A.

Definition 2.  The labeling #4 associated to A is the map from the connected components of 79 \ dA
to the set {dis, ord} that assigns ord to components in A4 and dis to components in A ;.

Definition 3. Two contours y;, i = 1,2 are compatible if do(y;,¥,) > % We extend this definition
analogously to two interfaces, or one interface and one contour.

Definition 4. A matching collection of contours I" and interfaces S is a triple (I', S, ¢) such that S
is an interface network and

1. The contours and interfaces in I' U S are pairwise compatible, and
2. ¢ is a map from the set of connected components of T\ Uyerusy to the set {dis, ord} such that
forevery y € ' U S, distinct components adjacent to y are assigned different labels.
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Lemma 3.2. The map from edge configurations A € Q to triples (', S, ) of matching contours and
interfaces is a bijection.

Proof.  See [8, p. 15]. n

3.3 | Contour and interface formulation of Z

By Lemma 3.2 we can rewrite the partition function in terms of matching collections of contours and

interfaces by re-writing the weight w(A) of a configuration A in terms of its contours and interfaces. By

weight w(A) we mean the numerator of (4), that is, w(A) = plI(1 — p)PIgeVA To this end, define
eord ‘= —dlog(l —e7?), egqs :=dp—1logqg, « := %log(eﬂ - 1. 31

Further, define the size ||y|| of a contour y (resp. size ||S|| of an interface S) by

ynUe SmUe.

eeE eeE

Iyl == . ISl == (32)

This is the number of intersections of y (resp. S) with |, e. For a continuum set A we write |A| for
|A N T¢|, that is, the number of vertices of T¢ in A in the embedding of T¢ into T¢. This will cause
no confusion as we never need to measure the volume of a continuum set.

Using these definitions, w(A) can be written as

W(A) — qC(Aard)e_edis |Adis | e_eord |Aord I He_K”S” He_’flly ” . (33)

Ses yer

where c(Aqq) is the number of connected components of A,q. The products run over the sets of inter-
faces and contours associated to the edge configuration A, respectively. We indicate the derivation
of (33) in Section 3.3.1 below; see also [8, p. 13—15]. Since (recall Q = 2E)y

Z=750 -7, g)= Y wiA), (34)

AeQ

it follows from (33) and Lemma 3.2 that

7Z = Z qC(Aord)e_edis |Adis | e_eord |Aord | He_K”S" He_K||7|| , (35)

(s Ses yel

where the sum runs over matching collections of contours and interfaces. This is the contour and
interface network representation of the random cluster model partition function.
In what follows it will be necessary to separate different contributions to Z. To this end, let

Qtunnel = {A € QIS(A) ?l: ﬂ}: £2rest =Q \ Qtunne]: (36)
and define the corresponding partition functions

Zumel = ), WA), Ziw = ), W(A). (37)

AEannel Aegrest

By (35) Z.t can be expressed in terms of contours alone. We will see later that Zynne 8 very small
compared to Z., and so the task of approximating Z is essentially the task of approximating Z..
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3.3.1 | Derivation of contour representation

We briefly indicate how to obtain (33). Recall that G4 denotes the graph (V(G),A). Let ||6A|| = |6:1A] +
2|6,A], where ;A is the set of edges in E \ A that contain k vertices in V(A). Observe

c(V,A) = c(Ga) + [V \ V(A), (38)
2|A| = 2d|V(A)] - [|6All. (39

The first of these relations follows since every vertex not contained in an edge of A belongs to a
singleton connected component, and the second is a counting argument. Using these relations one
obtains

W(A) = g9Cn) sl VY g=eons| VA p=r oA (40)

To pass from (40) to (33) requires just a few observations. First, ¢(G4) equals the number of com-
ponents of A, which is the number of connected components of Aqq. Second, |V(A)| = |Aoal, and
similarly |V \ V(A)| = |Aais|. Lastly, ||6A]| is precisely the sum of sizes of the contours and interfaces,
as each contribution to ||0A|| is given by a transverse intersection of an edge e with the boundary of A.

3.4 | External contour representations

Next we will take the first steps to construct a representation of Z..q as the sum of polymer model
partition functions. We begin with some basic results and definitions. Fix an arbitrary point x, € T¢
that cannot be contained in any contour, and let LI denote disjoint union.

Lemma 3.3 ([8, Lemma 4.3]). For any contour y, TS \ y has exactly two components.

Definition 5. Let y be a contour, and suppose T¢ \ y = C uD. Then the exterior Ext y of y is C if
|C| > |D]|, and is D if the inequality is reversed. In the case of equality the exterior is the component
containing x,. The interior Int y of y is the component of 7% \ y that is not Ext y.

Note that the notion of exterior is defined relative to 7%, though we omit this from the notation.

Remark. Thisis a different definition of exterior than is used in [8]; our definition is more convenient
for algorithmic purposes. Most of the results of [8] concerning the interiors/exteriors of contours apply
verbatim with this change, and whenever we use these results we will remark on why they apply.

If two contours y and y” are compatible, then we write (i) y < y" if Int y C Int y’ and (ii) y Ly’ if
Int y nInt y* = . Given a matching collection of contours I', y € I" is an external contour if there
does not exist y’ € I" such that y’ < y. The exterior of a matching collection of contours I is

Ext I := () Exty. (1)

If I' is matching, then Ext I" is a connected subset of T¢. This follows by noting that [8, Lemma 5.5]
holds with Definition 5 of the interior and exterior, and given this, the connectedness of Ext I" follows
by the argument in [8, Lemma 5.6]. Note that since Ext I" is contained in T¢ \ UyeF Y, this implies
that Ext I is labeled either ord or dis.
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As usual in Pirogov—Sinai theory, see, for example, [8, Section 6.2], it is useful to resum the match-
ing compatible contours that contribute to (35) according to the external contours of the configuration.
To make this precise, we require several definitions. A matching collection of contours I' is mutually
external if y Ly’ for all y # y’ € I'. For a continuum set A C T¢, we say a contour y is a contour in A
if do(y, T \ A) > 1/2. The distance to the empty set is infinite by convention.

Write C(A) for the set of contours in A, and C = C(T¢) for the set of all contours. For A C T¢
define G'(A) to be the set of matching mutually external contours in A, and then define

Zoa(A) 1= ) emenl BT T omelrliZ,, (Int ), (42)
Feg‘g’r‘l‘j(A) yer’

Zas(A) 1= Y eewlAB N Temlrlgz (Int p), (43)
rece(A) yer

dis

where the sums in (42) and (43) run over sets of matching mutually external contours in which Ext "
is labeled ord and dis, respectively. This is the desired resummation. In the special case A = T these
partition functions represent the sums of w(A) over

Qord = {A € Q\ Qumel|[Ext T'(A) is labeled ord}, (44)
Qs :={A € Q\ Qumnel|Ext T'(A) is labeled dis}. 45)

That is, we get a decomposition Zyest = gZord + Zais, Where

Zwa=q"" D), wA), Zic= Y wA). (46)

AeQ AeQyi

‘ord

Subsection 3.8 will give interpretations of these quantities in terms of random cluster model
partition functions for many other choices of A.

3.5 | Labeled contours

This subsection introduces labeled contours and establishes some basic properties of these objects.
These properties will ensure that we can efficient enumerate labeled contours.

In Definition 2, we associated a labeling to an entire collection of matching and compatible con-
tours and interfaces. For collections of contours, since each contour splits T4 into two pieces, it is
more convenient to associate the labeling to individual contours. We do this by assigning a label to
Int y (resp. Ext y) according to the label of the region of T¢ \ U,cry adjacent to y contained in Int y
(resp. Ext y).

A compatible set of labeled contours 1" is a set of compatible contours I" such that the con-
nected components of T4 \ Uyery are assigned the same labels by the labeled contours. More
precisely, for a component B of T4 \ Uyery, 0B is a union of compatible contours y, ... , ¥, for
some k > 0, and (up to relabeling) either (i) y; < y, fori = 1, ... ,k or (ii) yily; fori # j.
The condition of compatibility of the labels in the first case is that the interior label of y, is the
same as the exterior label of y; for all i = 1, ... k, and in the second case is that all exterior labels
agree.

By construction, the set of collections of matching and compatible contours is the same as the set
of collections of compatible labeled contours. The advantage of the latter is that it enables us to define
a labeled contour y to be ordered if its exterior label is ord, and disordered if its exterior label is dis.
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We let Corg(A) and Cg;s(A) denote the sets of labeled contours in A with external labels ord and dis,
respectively, with Corq = Cora(T%) and Cais = Cais(T?). The next lemma gives a way to construct a
labeled contour y from an edge configuration.

Lemma 3.4. Let ¢ € {ord,dis}, let y € Cs, and A = Int y. Then

o [f ¢ =dis, let E'(A) be set of edges contained in A. Then y is the unique component of 0A where
A=E'(A) CE.

o If ¢ = ord, let E'(A) be the set of edges whose midpoints are contained in A. Then y is the unique
component of 0A where A = E\ E'(A).

Proof.  These claims follows from [8, Lemma 5.1]; see the proof of [8, Lemma 5.11].° [

Lemma 3.4 gives a way to construct a given contour from some set of edges A. For our algorithms
it will be important to be able to generate contours from a relatively small set of edges. We first explain
how to do this for disordered contours.

Suppose ¥ € Cgis and let A = Int y N T¢. Define

& ={e={ij}li.j € A, de(mid(e),y) > 3/4}, @7

where mid(e) denotes the midpoint of the edge e; this is the vertex of %T,Ef on the two-step path from i

tojin %Tﬁ.

Lemma 3.5. Suppose y € Cais and let A = Int y. Suppose F C &, and let A = E' \ F, where
E' = E'(A) is defined as in Lemma 3.4. Let T be the set of contours in dA. Then y € T, and for all
y' € T withy' # y we have y/ < y. Moreover, all sets of matching contours consisting of y and
contours in Int y arise from such F.

Proof.  We begin by recalling an alternate construction of A from [8]. Let £ € E(T¢), and let D C E.
Set D* to be the set of (d — 1)-dimensional unit hypercubes dual to the edges of D, and set

V_(D) = {xe V(T)|{x,y} €D if {x,y} €E}.

Set Dy;s to be the union of the open 3/4-neighborhood of V_(D) and the open 1/4-neighborhood of
D*. Then by [8, Lemma 5.1, (iv)], if D = E\ A, E \ A = Dg;. That is, Dy is the disordered region
associated to A (relative to the region E).

To prove the lemma, we apply this construction with £ = E'(A) and D = F. The
definition of &, ensures that both the open 3 /4-neighborhoods of the included vertices and the open
1 /4-neighborhoods of the included dual facets are at distance at least 1/2 from y. This implies that
y is a boundary component of E \ F, and the first claim follows as all other boundary components
are adjacent to Dy;s. The second claim follows from the bijection of Lemma 3.2, which restricts to a
bijection in this setting. "

Lemma 3.6. Suppose y € Cqis. Then there is a connected graph with edge set A such that (i) |A| <
2d ||y || and (ii) y is the outermost contour in 0A.

3These results rely only on the geometry of hypercubes and not on the definitions of interior/exterior.
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Proof.  Choose F = &, in Lemma 3.5. Then the subgraph of T¢ induced by E” = E'(A) \ F
is connected: if not 0E” would contain two compatible exterior contours as the boundaries of the
thickenings of the connected components of E” are compatible. This would contradict the conclusion
of Lemma 3.5 that there is a unique exterior contour.

The bound on the size of A is crude; it can be obtained by noting that the included edges all contain
a vertex from which there is an edge outgoing from A, and the count of these vertices is a lower bound
for ||y||. Each of the vertices is contained in at most 2d edges. L

We now establish a similar way to construct an ordered contour from a small edge set. The situation
is slightly different due to the differences between ordered and disordered contours in Lemma 3.4.
Define, for y € Copg, A =Int y n'TY,

& = {{i,j}i,j € A}. (48)

Lemma 3.7. Supposey € Corq and F C &E,. Let A = (E \ E'(A)) U F, where E'(A) is defined as
in Lemma 3.4. Let T be the set of contours in 0A. Theny € T, and for all y' € T withy’ # y we
have y' < y. Moreover, all sets of matching contours consisting of y and contours in Int y arise from
such F.

Proof.  The proof is essentially the same as for Lemma 3.5. Let A" = E'\ E'(A). The set F is disjoint
from A’ as every vertex i interior to y is at distance at least 3 /4 from y. This implies dA is the union of
0A" and oF, which implies the first claim. The second claim follows from the bijection of Lemma 3.2,
which restricts to a bijection in this setting. n

Two edges e,f € E are called I-adjacent if d(e,f) < 1. A set of edges A is I-connected if for
any e,f € A, there is a sequence of 1-adjacent edges in A from e to f. In the next lemma, dA“ is the
boundary of the thickening of the edge set A = E \ A.

Lemma 3.8. Suppose y € Cora. Then there is a 1-connected set of edges A of size at most ||y || such
that y is the outermost contour in 0A°.

Proof. Let A be the set of all edges that intersect y. By the definition of || - ||, |A| < |lyll. By
Lemma 3.7 y is the outermost contour in A¢, as A = E'(A)U&yi(A). The 1-connectedness of A follows
from the connectedness of y and the observation that every point of y is at most d, distance 1/2 from
an edge in A. n

3.6 | Contour enumeration

This section uses the results of the previous subsection to guarantee the existence of an efficient
algorithm for enumerating contours. This requires a few additional lemmas.

Lemma3.9. Forally €C, |Inty| < ||yl and |Int y| < (n/2)|I7]l.

Proof.  This follows by [8, Lemma 5.7], as the interior of a contour as defined by Definition 5 is
always smaller than the definition of the interior of a contour in [8]. n

Lemma 3.10.  There is an algorithm that determines the vertex set Int y n'T¢ in time O(||y||?).
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Proof. Letm = ||y||. Let G be the subgraph of T4 that arises after removing all edges that intersect
some (d — 1)-dimensional face in y. Consider the following greedy algorithm to determine the two
connected components of G. The algorithm starts at Cyp = x, where x is chosen such that it is contained
in an edge not present in G. The algorithm determines the connected component containing x in G by
adding at step i + 1 the first vertex (with respect to lexicographic order) in T¢ \ C; that neighbors C;;
if no neighbors exist the component has been determined. The kth step takes time at most (2d )k, so
performing N steps of this algorithm takes time O(N?).

Since [Int y| < ||y]|*> by Lemma 3.9, we can stop the greedy procedure after m?> + 1 steps. If the
algorithm terminates due to this condition, the component being explored is the exterior component.
The interior component can then be determined in at most O(m?) additional steps by running the greedy
algorithm from the neighbor of x that is in the interior component. Otherwise the algorithm will have
already terminated and determined the interior component. L

Lemma 3.11. Fix an edge e € E. There is an algorithm to construct all contours y € Cyq that (i)
can arise from a connected edge set A that contains e and (ii) have ||y|| < m. The algorithm runs in
time exp(0O(m)).

Similarly, there is an exp(O(m))-time algorithm to construct all contours y € Cqis that (i) can arise
from an edge set A such that A€ is 1-connected and contains e and (ii) have ||y|| < m.

Proof.  We first consider disordered contours, and begin by enumerating all connected sets A of
edges that contain e that are of size at most 2dm. This can be done in time exp(O(m)). If 2m < n then
we consider the enumerated edge sets as subsets of E(']I“zim); otherwise we consider them as subsets of
E(T9).

For each edge set A, construct dA and take the outermost contour (if there is not a single outermost
contour, discard the result). By Lemma 3.6 this generates all disordered contours of size at most m that
arise from connected edge sets containing e. We obtain the desired list of contours by removing any
duplicates, which takes time at most exp(O(m)). The remainder of the proof shows that the operations
in this paragraph can be done in time polynomial in .

The constructions of dA takes time at most O(m) as it is a Z, sum of (d — 1)-dimensional facets,
and determining these facets takes a constant amount of time (depending only on the dimension d)
for each edge. Determining if a component of dA is a contour can be done by computing the winding
number of the component; this takes time O((2dmAn)K) for acomponent with K facets by Lemma 3.1.
Determining the interior of a given contour takes time at most O(m?) by Lemma 3.10, and hence we can
check if Int ” C Int ¥ for all pairs in time O(m*) since there are at most m? contours. This completes
the proof for disordered contours.

For ordered contours the argument applies nearly verbatim. The changes are as follows. First, enu-
merate 1-connected sets A¢ that contain e. Second, to see that we get the desired contours, appeal to
Lemma 3.8. Lastly, computing dA takes time O((m A n)?) which is polynomial in m; this is by our
choice of torus in the first paragraph of the proof. n

The next definition is useful for inductive arguments involving contours.

Definition 6. The level L(y) of a contour y is defined inductively as follows. If y is thin, meaning
C(Int y) = @, then L(y) = 0. Otherwise, L(y) = 1 + max{L(y)|y’ <y}

CallasetAC T a region if A = T orif A is a connected component of T? \ dA for some A C E.
In the former case set dA = (3, and in the latter case set dA to be the union of all connected components
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of dA incident to A. In particular if A = Int y for some contour y, then A is a region and dA = y.
Finally, for compatible contours y4, ... ,¥,, define ||y, U---Uy,|l = lly;ll +- - -+ |ly,|l. We conclude
this subsection by stating our main algorithmic result on efficiently computing sets of contours.

Proposition 3.12.  There is an O((|A| + ||0A[]) exp(O(m)))-time algorithm that, for all regions A, (i)
enumerates all contours in Coq(A) U Cyis(A) with size at most m and (ii) sorts this list consistent with
the level assignments.

Proof.  We begin by proving the first item. Apply Lemma 3.11 for each edge contained in A. This
takes time O(]A| exp(Q(m))) as there are at most 2d edges in A for each vertex of T¢ in A. The output
is a (multi-)set of contours of size at most m contained in T¢. Trim the resulting list of contours to
remove duplicates.

By Lemma 3.10 in time exp(O(m)) we can determine Int y for every y from the list obtained in
the first paragraph. We determine the list of level zero contours by iterating through the list, checking
for each y if y/ < y for some other ¥’ # y in the list. If not, assign y level 0. This takes time at most
exp(O(m)). We continue by running the same operation on the sublist of all contours of level at least
one, that is, the sublist of contours not assigned level 0. If y has level at least one and thereisnoy’ < y,
y’ also of level at least one, then y is assigned level one. By repeating this we assign a level to every
contour. The maximal level of a contour is m?, the maximal size of the interior of a contour of size m,
and hence the total running time is at most m” exp(Q(m)) = exp(O(m)).

To conclude, trim the list to retain only contours y’ contained in A. This can be done by removing
contours at distance less than 1/2 from y. Computing this distance takes time O(||y||||y’|]), which is
at most O(||y||m). n

3.7 | Polymer representations for Z,4 and Z;s

To obtain polymer model representations of Z,4 and Zy;s, define Q.a(A) and Qg (A) to be the sets of
compatible collections of contours in A that are labeled ord and dis, respectively. Define

dvdl] Zais(Int )’)

_ Zora(Int ¥)
Kgis(y) = «llyl| 4%ord 49
ZonaL )’ ais(y) = e (49)

K, = s
ar)=e Zais(Int 7)

By following a well trodden path in Pirogov—Sinai theory (see, e.g., [8, p. 28] or [25, p. 28]), these
definitions give the following representations for Z,,q4 and Z;s as partition functions of abstract polymer
models:

Zora(A) = =8N T Kora(y), (50)
reQ, (A)Y€r

Zais(A) = =M N TTKais(p), (51)
reQg(A)rel

where the sums run over collections of compatible labeled contours in A with external label ord and
dis, respectively.

In fact, for # € {ord, dis}, the above formulas represent Z,(A) as the partition function of a polymer
model in the form discussed in Section 2, that is, where polymers are subgraphs of a fixed graph G
with bounded degree. In detail, recalling the discussion in Section 3.1, we consider contours as induced
subgraphs of (a subgraph of) the bounded-degree graph (%'H‘ﬁ)*. Thus |y| is the number of vertices in
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a contour when represented as a subgraph. Condition (14) holds with & = 1 since ||y|| > |y| by (32).
The more substantial hypothesis (15) will be verified in later sections for appropriate choices of the
label and of f.

*
In the sequel we will write IAI(le )« for the size of set of vertices of (%’]I‘,‘i’) that are part of some
2°n

contour y in C,(A) for some 7. The next technical lemma shows it is enough to find algorithms that
are polynomial time in |A] 1qay..
2°n

Lemma 3.13.  For A a continuum set, |A|(1Td)* is polynomial in |A|.
9

Proof. By construction, contours inside A arise from edge configurations of edges inside A. The
number of such edges is at most 2d times the number of vertices inside. Since contours are bound-
aries of unions of (d — 1)-dimensional hypercubes centered at vertices in (%'M )* that lie on edges,
this proves the claim, since there are a bounded number of such hypercubes associated to each
edge. n

3.8 | Random cluster model formulations of contour partition functions

The definitions of the partition functions Z,q(A) and Zgis(A) in (42) and (43) only involve contours. In
general, these contour partition functions do not correspond to random cluster model partition func-
tions due to the exclusion of interfaces. However, we will show that when A = Int y n T¢ can be
embedded as a subgraph of Z?, there is such an interpretation.

To make this precise, recall the definitions (7) and (8) of Z];\ and ZY for A C Z¢ such that the
subgraph G induced by A is simply connected. Recall that p = 1 — ¢7#.

Proposition 3.14.  Suppose A C Z¢ is simply connected, and let n = 3|A|. Then there are contours
Yais € Cais(T%) and ¥ org € Cora(T?) determined by A such that

! _ _
ZdlS(Int yOrd) — (1 _p)_zll}'md”Zf , Zord(Int ydis) — q lpdllnt Yord |{E(A)}|IZK‘

Proof.  Since n = 3|A|, we can embed A C T4, Moreover, the set of boundary vertices dA = {i €
A1 3je Z4\ A, (,)) € E(Z4)} can be identified with {i € A : 3j € A%, (i,j) € E}. Thus the graphs
Gy and G/ used in the definitions of Z{\ and Z} are the same whether defined by considering A as a
subset of Z¢ or T¢. Note that by our choice of n we know that any component of dA will be a contour
if A is a subset of edges that are at graph distance at most two from A. To see this in an elementary
way, note that we can further consider A as a subset of T¢ such that the fundamental loops of T4 are
at distance at least (say) ten from A.

We first consider the case of Zf\. To do this, let Ay C E be the set of edges with both endpoints
in A°. Let y,4 be the unique contour in dAy; the fact that there is a unique contour follows from
the fact that A is simply connected. By Lemma 3.7, for any subset A of edges in E(Gp) = &, _,,
the contours of dA are contained in Int y 4. Moreover, this lemma ensures that by carrying out the
contour construction of Section 3.3.1 for subsets of edges A" = Ay U A where all edges of A are from
E(Gx), we obtain all contour configurations I' = {yoq} U T’ where the contours of I are contained
in Int y 4.

To obtain the conclusion, note that (i) ) 4+ w(A”) is proportional to ik , where the sum runs over
these A’ = Ag U A described above, and (ii) Y ,, w(A’) is proportional to Zgis(Int y.4). To obtain the
proportionality constant we compare the contributions of the empty edge configuration (empty contour
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configuration), see (43). These are, respectively, g/*l(1 — p)IE™1 and ¢!l (1 — p)?IA. The ratio of these
terms is (1 — p)_% Worall gince [17.:qll is exactly the number of edges between A and A°.

We now consider the case of Z}. Let A = E(Gx), and consider the ordered contour y’ that arises
from the edge set E \ A. Define

A 1= AU {e € E|d(mid(e), ") < 1/2}, (52)

the set of edges whose midpoints are either in the interior of ¥y’ or within distance 1/2 of y’. Then
set ¥, to be the single contour in dA; there is only one contour in this set by the assumption A is
simply connected. Note that A is precisely &, as defined above Lemma 3.5, and hence there is a
bijection between contour configurations in Int ¥, and subsets of A in which each edge not in A is
occupied. As for the case of ZJ;\ we can now conclude, as summing over such edge sets 18 proportional
to both Z,q(Int y ;) (recall (46)) and Z}. To compute the proportionality constant, we compare the all
occupied configuration to the empty contour configuration, see (42). This gives, respectively, gp!Z®V)!
and el Yol and hence

Zora(Int y4) = g~ p110¢ Yo | -IEON (53)
|

4 | CONTOUR MODEL ESTIMATES

In this section, we state several estimates related to the contour representations from the previous
section. Recall the definition (34) of Z.

Lemma 4.1 ([8, Lemma 6.1(a)]). There are constants ¢ > 0, go = go(d) < o0, and ny < oo such that

Zt“Tl < exp(=cpn). (54)

In what follows ¢ will always denote the constant from Lemma 4.1, and gy and ny will always be
at least as large as the constants in the lemma. More precisely, several lemmas will require go to be
chosen large enough, and we implicitly take go to be the maximum of these requirements. We also
choose ng large enough so that via (3) we have f. > f,. Lemma 4.1 ensures that Zye i neglectable
when approximating Z up to relative errors € 3> exp(—cpn?~"). We will also need to know that Zg; is
neglectable when f > f.. This requires two lemmas.

Lemma 4.2. If g > qo, n > ny, and f} > [, there exist constants aqgis > 0 and f > 0 so that if
€, .= 2exp(—cpn), then

Zoa 2 eXp(=(f + €n?),  Zuis < exp((=f + exn) gnaglexe‘udf'E’“ e, (55)
= dTS[ yerl’

Proof.  With agis > 0 this follows from [8, Lemma 6.3] provided f = fora for f > f, and that f = fora
follows from [8, Lemma A.3]. What remains is to prove agis > 0 when f > f.. The results of [32]
imply that there is a unique Gibbs measure for the random cluster model when § > f.. If aqis was 0
for some f# > f., then the argument establishing [8, Lemma 6.1 (b)] implies the existence of multiple
Gibbs measures, a contradiction. n
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Lemma4.3. If g = qo,n = ng, and f > ., then there exists a constant bgs > 0 so that

Liis < ) exp(—bgn~!) | (56)

ext

Proof.  Suppose I' € Ggi;. Then we claim that

[ExtT|+ ) llyll = 2", (57)
yel
To see this, note that
[ExtT|+ ) [Int y| = n", (58)
yel’

which combined with Lemma 3.9 implies

[Ext T+ 2 X llrll = n, (59)
yer

which implies (57) when n > 2.
By Lemma 4.2, if n is large enough,

Zgis < Zmaxe—"%mxt F|He—§ﬁ||y||' (60)
Zord FEQS’;‘S{ yer
Set bgis 1= min{ags, cf} > 0. By (57),
e—ud%IEXt FIHe—gﬂ”Y” < exp(_bdisnd_l) (61)
vel’
forall " € G§t. The lemma now follows from (60). n

The next two lemmas will allow us to verify the Kotecky—Preiss condition for the contour models
defining Zy;s and Z,4 from the previous section.

Lemma 4.4 ([8, Lemma 6.3]). If g > qo and p = p., then

Kord(}') < e—CﬁHy”’ and Kdis(y) < e_cﬁ”}'“’

for all y in Cyq and Cgis, respectively.

Lemma 4.5 ([8, Lemma 6.3]). If g > qo and p > [, then

Koa(y) < el forall y € Copa.

3logg

In particular, since f > f, = , then for sufficiently large g the contour weights w, = K4(y)
p d 4

(for p > f.) and w, = Kg4;s(y) (for § = f.) will satisfy condition (15). Condition (14) is satisfied with

b = 1 by the discussion in Section 3.7.
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Next we will show that when f > f. and the disordered ground state is unstable, that regions
with disordered boundary conditions “flip” quickly to ordered regions by way of a large contour; more
precisely, the dominant contribution to Zgis(A) comes from collections of contours with small external
volume.

For aregion A and M > 0 we define

HIP(A, M) 1= {T" € GX(A)| {Ext T nA}| < M},

and

Zgl M) = Y el TN T T Wz, ). (62)
e (A M) rel
Thus, compare (43), Zf}j?
exterior volume.

(A, M) is the contribution to Zgs(A) from contour configurations with small

Lemma 4.6. Suppose q > qo and [ > f.. Then there exists aqis > 0 so that the following holds for
all n > ng. Suppose y € Corg. For any € > 0, if

2

Adis

M =

(c+Ilirll, (63)

then Zjliisp(lnt y, M) is an e-relative approximation to Zg(Int y).

Proof. Let A = Int y. Note that the lemma is immediate if Int y does not contain any contours. Let
ZE(A) 1= Zai(A) = Z5P(A, M),
To prove the lemma it suffices to show that
0 < ZE(A)/ZEP (A, M) < €/2. (64)

The lower bound is immediate since Zg;s is a sum of non-negative terms and zf}i?(A, M) is at least one.
Thus the proof of (64) has two parts: lower bounding Zjﬁi;’(A, M) and upper bounding ZgT(A). The
combination of these bounds will prove (64).

We begin with the lower bound on zf};g’ (A, M). Recall the definition (48) of &,. Let y’ € Cais(A) be
the contour obtained by thickening &, and taking the boundary, that is, 0&,. LetI" = {y’}. Note that
Ext I' contains no vertices, because A is connected and all edges inside A are in &,.

Next observe that ||y’|| < ||y]|. This is because by construction any edge contributing to ||y’ || must
have one vertex outside of A, and such an edge also contributes to ||y||. In particular, I' € HE‘SP(A, M),
and hence

ZIP (A, M) > eeal BT =Yl g7 (g )
> ¢ lgz, . a(Int y')

> ¢ WHDIrN gp(Fren|tint 7'}

[a—

2 JeCH Il AN,
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where €, = 2e~P" as above and f is the constant from Lemma 4.2. The second inequality used
that Ext " contains no vertices. The second-to-last inequality follows from Lemma 4.2, and the last
inequality follows since (i) |Int | = |Int y’| and (ii) for n large enough we have ¢/ ¥l < 2 for all
y eC. _

Next we prove an upper bound on ZE'SP(A, M). In fact, the upper bound is essentially contained
in [8, Appendices A.2 and A.3], and we explain it here. Some further notation will be helpful. Let

aqis > 0 be the constant from Lemma 4.2. We call a contour y € Cg “small” if diam(y) < :—ﬂ
dis
and “large’ otherwise. Here diam(y) denotes the diameter of y, the maximum over i = 1, ... ,n

of [{I{y)}|, where Ii(y) = {k € Z/nZ|S" ny # @}, where S} is the set {x € T|x; = k).
See [8, p. 22].
For a region A’, let

extsmall ATy = (T e GXY(A")|y" is small Vy' €T},

e E(A) 1= (T € GRUANY s large Vy' €T},
and
Zfﬁrsmn(A,) e 2 o —Cais|Ext l"nA'|He—x||7||qud(Int Y)
reg (A" yel

dis,small
o —eg A !
= g CaslA| Z I IKdis(J’ ).
t, Lo Ay’ el
reggLm 'S

Moreover, let

HT(A) = {T € GZNA)| {Ext T nA}| > M}, and
HEPE(A) = (T € GO (A)| [{Ext T nA}| > M}.

Following the proof of [8, Lemma A.1], we have that

ZEAM = Y eewlB N T et gz, (Int ')
TeHST(A) rer

< 2 zZi@Exrn )] ]ae " Zgg(ine y)
renE ) rer

< el M= 30§ e—“d%mxtrnA|He—<§—3>uy'||

P ) et

< 2o~ N2yl ,~ =M

The first inequality follows since for each ' € HS(A), the set of large contours in I" appear in
HETE(A). The second inequality follows from the proof of [8, Lemma A.1]; as above we are using
that f = f,,g when f > f.. The last inequality follows from [8, (A.12)] and the fact that ¢:Al < 2 for
large enough 7.
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We can now conclude and prove (64): putting the bounds together and using (63) we get

err i
ffdis(A) < 4q—1e(K+3)||y||—dTM <e2.
2P M)

We conclude this section with an enumerative lemma concerning H;".
Proposition 4.7.  There is an algorithm that given y € Coq and M € N outputs Hgiisp(lnt ¥y, M) in
time ||y ||eCUrI+M),

Proof.  This follows from a variation on the proof of Proposition 3.12. To determine HS‘Q’ (Int y) we
will consider y to be a contour in a torus of side-length ||y|| A n; this torus has volume polynomial in
Iyl

Hgilsp(lnt y) is the set of mutually external contour configurations I' \ ¥ obtained as F ranges over
the possibilities listed in Lemma 3.7. As in Lemma 3.8 we can determine E’ U F by considering it as
the complement of 1-connected set of edges A = A’ U B, where A’ is the set of edges that intersect y.
For any choice of such an A, Ext I' n T¢ is of size at least O(|{B}|), so to determine Hﬂ?(lm Y, M) it
is enough to consider all possible sets B of size at most M. The claim now follows by arguing as in the
proof of Proposition 3.12. n

5 | APPROXIMATE COUNTING ALGORITHMS

This section describes our approximate counting algorithms for f > f,. The algorithms differ depend-
ing on whether f = f., f > f., or B < f < f.. Recall that for 7 € {dis,ord}, Z,(A) was defined for
all regions A in (42)—(43). The heart of this section is the following lemma.

Lemma 5.1. Ford > 2 and q > qo the following hold.

1. If B = B. there is an FPTAS to approximate Zyq(A) and Zgs(A).
2. If B> P. there is an FPTAS to approximate Zyg(A).
3. If pn < P < P. there is an FPTAS to approximate Zgis(A).

In each case the FPTAS applies to any region A, with running time polynomial in |A|, the number
of vertices of T% in A.

Sections 5.1 and 5.2 prove the first two cases of Lemma 5.1. The case f, < fi < f. is very similar
to f > f., and we defer the details to Appendix B. In Section 5.3, we show how these results, together
with a result from [8], suffice to give an FPRAS for Z on the torus.

5.1 | Proof of Lemma 5.1 when g = 3,

We begin by defining a useful variant of the truncated cluster expansion for Z,q(A) and Zg;(A). Let
K be a function from contours to positive real numbers. For # € {ord, dis} define

TrmAK) i= ), ][R,

regs ) yer
|IT|| <m
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so that by (50) and (51) Z,(A) = exp(—es|A]Tr.«(A, Kz) provided the cluster expansion for the
polymer models converge.
Recall that the level of a contour was defined in Definition 6, and that |A|(1Td)* was defined
2°n

immediately prior to Lemma 3.13.

Lemma 5.2.  Suppose d > 2, q = qo and p = p.. Given A with |A|11s. = N, and an error

2 "~ -
parameter € > 0, let m = 10g(8N? /€)/3. Inductively (by level) define weights Koa(y) and Kis(y) for
all contours y in Cog(A) and Cyis(A) with size ||y || < m by:

1. If y is thin, then set
kord(y) — e—K"y”_(edis_eord)IInt YI, i(dls(}') — qe_K”y“_(eord_edis)unt Y|.
2. If y is not thin, then set

kord()’) — e_K”y”_(ediS_eMd)lIm it CXP [Tm,dis(Int Y, IN() - Tm,ord(Int Y, k)] 3
kdis(}') — qe_K”y”_(eord_edis)llm vl CXP [Tm,ord(hlt Y, i() - Tm,dis(Irlt Y, i()] .

Then for N sufficiently large e=*"M exp(Ty..(A, K,)) is an e-relative approximation to Z;(A) for
¢ € {ord, dis}.

Proof.  Suppose # € {dis, ord}. First note that the inductive definition of the weights K,(y) makes
sense: to compute K, (y) for a contour y of level ¢+ 1 only requires knowing K,(y’) for contours y’ of
level t and smaller.

Since f = f. and g > go, Lemma 4.4 tells us that

Ky (y) < el (65)

for 7 € {dis,ord} and for all y € C.(A). If g is large enough then (65) implies condition (15) holds
since f. grows like log ¢ by (3). Thus by Section 3.7 the hypotheses of Lemma 2.1 are satisfied and
the cluster expansion for Z,(A) converges for 7 € {ord, dis}.

Now let ¢/ = ¢/N, so that m = log(8N /€¢')/3. We will apply Lemma 2.3 with v(y) = |Int y|. This
is a valid choice of v(y) by Lemma 3.9. Lemma 2.3 says that

el exp(Toram(A, Kor))  and ™M exp(Tgism(A, Kaio) ) ,
are e-relative approximations to Zyq(A) and Zgis(A) if for all y € C/(A) of size at most m, K(y) is an
¢'|Int y|-relative approximation to K(y). We will prove this by induction on the level of y.
For a thin contour, K4(y) = K/(y). Now suppose that for all contours y of level at most ¢ and size

at most m, K,(y) is an €’|Int y|-relative approximation of K,(y). Consider a contour y of level f + 1
and size at most m. Then all contours ¥’ that appear in the expansions

Tm,dis (IHI Y. i{dis) and Tm,ord(Int Y, i{ord)a

are of level at most 7 and size at most m, and so for each such y’, by the inductive hypothesis K/(y)is
an ¢’|Int y’|-relative approximation to K,(y’). Then by Lemma 2.3, we have that

e—(ed‘-s—emd)ﬂnt 4 eXP [Tm,dis(lnt Y. kdis) - T.m,ord(Int Y kord)]
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7, (Int 7)
Zog(Int 1) “
ing by the prefactor e "l for ord and by ge~*I"ll for dis shows that K/(y) is an ¢’|Int y|-relative

approximation to K(y) as desired. [

is an |Int y|€e’-relative approximation to (and likewise for dis and ord swapped). Multiply-

With this, we can prove the f = f. case of Lemma 5.1.

Proof of Lemma 5.1 when = .. Let N = |A| 1., and let m = log(8N?/€)/3. We need to show
2 n

that the expansion Ty ,(A, K,) and the weights K,(y) for all y of size at most m in Cz(A) can be
computed in time polynomial in N and 1/e for # € {dis,ord}. We can list the sets of contours in
Cora(A) and Cyis(A) of size at most m, together with their labels and levels, in time O(N exp(O(m)) by
Proposition 3.12. Since m = log(8N?/¢€)/3, O(N exp(O(m)) is polynomial in N and 1/e. The number
N itself is polynomial in |A| by Lemma 3.13.

To prove the lemma we must compute the weights K/(y) and the truncated cluster expansions
T,..(Int y, K,) for each contour in the list. We do this inductively by level. For level zero contours
K/(y) = K/(y) only depends on ||y|| and |{Int y}|, so K,(y) can be computed in time O(]|y|*) by
computing these quantities by using Lemma 3.10. We then continue inductively; each K,(y) can be
computed efficiently since the truncated cluster expansions can be computed in time polynomial in N
and 1/e using Lemma 2.2. [

5.2 | Proof of Lemma 5.1 when § > B,

When f > f.(g,d) the ordered ground state is stable, but the disordered state is unstable. For a
definition of stability of ground states, see, for example, [9]; the upshot for this article is that we cannot
use the cluster expansion to approximate Zgis(A) for a region A.

To deal with this complication we will appeal to Lemma 4.6. In words, this lemma says that for
B > P., atypical contour configuration in a region with disordered boundary conditions will have very
few external vertices. We will exploit this fact to enumerate all sets of typical external contours in the
region. This is possible since the number of external vertices is small. Once we have fixed a set of
external contours we are back to the task of approximating partition functions with ordered boundary
conditions.

We now make the preceding discussion precise. Given K : Cord(A) — [0, 00) and M > 0, define

EgS(AJ K) — eedislAl Z e_edisIEXT F[He_K”}'”qexp [Tm’ord(:[nt 'yy K)] .
TeH; " (A.M) rer

Lemma5.3. Supposed >2,q > qgoand p > p.. Let A be a region with |A|(lw)* =N, fixe > 0, and
~ 2
let m = 10g(8N? /€) /3. Inductively (by level) define K owa(y) for y € Cora(A) with size ||y|| at most m by

1. If y is thin, then
Kord(}’) = e_KHYIl_(edis_eord)llnt yl'
2. If y is not thin, define

kord(}') = e_K”y”_(edis_eord)IInt vl eXp [_Tm,ord(Int Y, IN{)] E‘ﬁ{s(lnt }'a Kord),

with M = 2 (1og(3—2?) 4+ 3)m).
Agig €
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Then for all N large enough, e ColAl exp(Tord,m(A, kord)) is an e-relative approximation
fo Zord(A)-

Proof. Lete' =¢/N sothatm =10g(8N/¢€’)/3.

If g is large enough then we have Kqq(y) < ="l by Lemma 4.5 since f > f,.. This along
with (3) implies condition (15) holds for ordered contours, and thus by Section 3.7 the hypotheses of
Lemma 2.1 are satisfied and the cluster expansion for Z4(A) converges. Applying Lemma 2.3 with
v(y) = |Int y| then tells us that

g Cord|Al CXP( Toram (A, Kord) )

is an e-relative approximation to Z,q(A) if for all y € Ceoa(A) of size at most m, Koa(y) is an
¢’|Int y|-relative approximation to K.4(y). We will prove this is the case by induction. The base case
of the induction (thin contours) holds since Kowa(¥) = Kora(y). Now suppose that the statement holds
for all contours of level at most ¢ and size at most m, and consider a contour y of level ¢ + 1 and size
at most m.

The inductive hypothesis and Lemma 2.3 imply that

e—eord|A| exp [Tm’ord(lnt Y, IN{)]

is an ¢'|Int y|/2-relative approximation to Z,q(Inty), and so it suffices to show that
e~ MEM (Int y, K o) is an ¢’|Int y|/2-relative approximation to Zg;(Int ).
By Lemma 4.6, Zgilsp(lnt Y.M) is an ¢’ /4-relative approximation to Zg(Inty) for

M = ai (10g(3€2—,q)+(rc+3)m), and so it suffices to show that e~¢uMZY (Int y, Kog) is an

dis =
¢'|Int y|/4-relative approximation to zi;”(lm ¥, M). We will accomplish this by showing, for each
I € He(Int y, M), that

e_edileXt I He—'fllr’llqexp [Tm,ord(Int )”,IN()]
y'er

is an €’|Int y| /4-relative approximation to

o—cas|Ext T H eI lgz, (nt y),
y'er

and then summing over I'. The prefactors are identical, and so it comes down to comparing
[T, rexp [Tora(Int ¥', K)| to [T, r Zora(Int ¥"). Since the contours in I' are mutually external,

D[t y’| < |Intyl,

y'el’

and hence it suffices to show that for each y’, exp [Tn.oa(Int ¥/, K)| is an ¢’[Int y’| /4-relative approx-
imation to Zy4(Int y’). This follows from Lemma 2.3 since m = log(8N/¢’)/3 and by induction we
have that Koq(y"") is an €’ |Int y”’|-relative approximation to Koq(y’") for all contours y” that contribute
10 Tpora(Int ', K). .

With this, we can prove the f > f. case of Lemma 5.1.
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Proof of Lemma 5.1 when > p.. GivenLemma 5.3, we need to show that we can compute K oq(y) for
all y of size at most m = 1og(8N?/¢)/3 in time polynomial in N and 1/e. The proof of this is the same
as the proof of the f/ = f. case of the lemma except that now we have to account for the computation

of ZM (Int y, K) for all y € Cyis(A) of size at most m, with M = az (log(%) + (k + 3)m).

dis

Fora givenT € Hﬁ?(lm ¥, M), the computation of

e—edileXt Il He—rrllr’llq exp [Tm’m.d(lnt )’,, i()] (66)
y'ell

can be done in time polynomial in N and 1/e since it just involves computing the truncated cluster
expansions T, oa(Int ¥, K) for at most m? contours y’, and since we compute Koq(y’) in order of the
level of y’, we will have already computed all the weight functions needed in the expansion.

To conclude, note the set Hggp(lnt ¥, M) can be enumerated in polynomial time by Proposition 4.7
since both ||y|| and M are O(log(N?/¢)). Since N is polynomial in |A| by Lemma 3.13, the proof is

complete. n

Note that Lemma 5.3 used the value of ag;s > 0 to determine the value of M in the definitions of
the weights K. Tt is desirable to avoid using agis as an input of the algorithm, and hence we close this
section with a lemma that shows how to bound M without knowing ag;s precisely.

Lemma 54. Supposed > 2,q > qo, and f} > p.. There is an O(1)-time algorithm to determine a
constant ay,, > 0 such that ags > aj,. The constants in the O(1) term may depend on q, f. d.

Proof.  We follow the notation from [8, Appendix A.1]. As discussed below [8, (A.7)], we have
|{ff — f;”)}| < ¢, for # € {ord, dis}, where €, = 2¢~?", where n is the side-length of the torus T¢,
and fr = lim, 0 £

()

Compute /" for £ € {ord, dis} until is at least 3¢,. Let ng be the first such » that is

() (n)
{f;)rd — Jdis }
found. Then by the triangle inequality, aq; is at least aj;,, = Eny-

Note that 79 can be bounded above in terms of the value of ags = aqis(f, d, ¢) and €,, so the above

procedure terminates in a finite time (depending on f,d, g). L]

5.3 | Proof of Theorem 1.1

To prove Theorem 1.1 we will need the following result from [8] about the mixing time of the Glauber
dynamics.

Theorem 5.5 ([8, Theorem 1.1]). The mixing time of the Glauber dynamics for the g-state
ferromagnetic Potts model satisfies

7g g (Tay =% ), (67)
where the O(-) in the exponent hides constants that depend on q, f.

We will use this result to give an approximation algorithm when the approximation parameter e
is extremely small. The reason we are able to combine the Glauber dynamics with our contour-based
algorithm to give an FPRAS is that [8] proves optimal slow mixing results for the Glauber and
Swendsen—Wang dynamics. That is, up to a constant in the exponent, the upper bound of the mixing
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time of the Glauber dynamics (or Swendsen—Wang dynamics) is the inverse of the bound on Zypne1 /Z
from Lemma 4.1. Thus when ¢ is too small for the contour algorithms to work, the Glauber dynamics
can take over.

Proof of Theorem 1.1.  Let N = n be the number of vertices of T4. We will use a simple fact several
times below: ife € (0,1),Z,Z* > 0,and Z*/Z < €/2, then (Z—Z*) is an e-relative approximation to Z.

We first consider the case f = f.. To give an FPRAS for Z = Zy« we consider two subcases. Let ¢
be the constant from Lemma 4.1.

Suppose € < 4" Since ¢ is polynomial in N and 1/e, we can use Glauber dynamics to
obtain an e-approximate sample in polynomial time. By using simulated annealing (e.g., [40]) we can
also approximate the partition function in time polynomial in N and 1/e.

If € > 4e=P"""" then by Lemma 4.1, Ziest = Zuiis + Zora 1S an €/2-relative approximation to Z,
so it suffices to find an e/4-relative approximation to both Zgs and Z,4. This can be done in time
polynomial in N and 1/e by Lemma 5.1.

Next we consider the case f > f.. Again there are two subcases. Let ¢ be the constant from
Lemma 4.1 as before, and let by;s be the constant from Lemma 4.3. If € < 4e—chn'™ 4 4e‘bdis"dfl, then
again ¢ is polynomial in N and 1/e and we can approximately count and sample by using the
Glauber dynamics.

If € > de=<Pn"™" 4 4ebasn™ , then by Lemmas 4.1 and 4.3, Z.q4 is an e /2-relative approximation to
Z and so it suffices to give an e/2-relative approximation to Z.4. This can be done in time polynomial
in N and 1/e by Lemma 5.1.

Lastly, consider f < f.. The case f < f, was completed in Section 2. The case f, < f <
f. is done exactly as the case f > f. with the roles of ord and dis reversed; see Appendix B
for details. m

Proof of Theorem 1.2 for counting. Let A C Z¢ be such that the induced subgraph Gy is finite and
simply connected. By Proposition 3.14, we can construct an ordered contour y_, and a disordered
contour y 4, so that

1
Zais(Int y) = (1 _p)_illyord”Z]/17 Zora(Int y4) = q—lpa'|{1nt Yord}|—|E(A)IZ'/wlv )

The FPTAS for Z} for f > f. then follows from Lemma 5.1, as does the FPTAS for Z{\ for fp, < p < P..
The case f < f, was covered in Section 2. n

6 | SAMPLING

In this section, we present efficient approximate sampling algorithms for the random cluster and Potts
models when f > f,. By the Edwards—Sokal coupling, see Appendix A, it suffices to obtain algorithms
for the random cluster model. Describing the strategy, which is based on that of [25, Sections 5 and 6],
requires a few definitions.

Recall the definition (4) of the random cluster measure xR¢ on T¢. Thus uRC is a measure on
subsets of edges A € €. Recalling the definitions (44) and (45) of the sets .4 and ;s of ordered
and disordered edge configurations, we analogously define

pe(A) = WZ(A), A € Q, with ¢ € {ord, dis}.
P
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For a region A, define measures v2 on the sets of external contours GZ(A) as follows.

e—edi5|AﬂEXT T Hyer E_K”y”qzord(lnt y)

Vi, @) 1= . TeGXAn, (68)
e Zgi(A) ais
e_eordlAnEXt FI H e_K”}'”Zd- (Int y)
A . yer 48 ext
VAD) = ., TecXn), (69)
. Zora(A) d

where |A N Ext I'| is the number of vertices contained in the continuum set A N Ext I'.

We now outline our strategy for approximately sampling from g and pais; @ small modification
will also apply to sampling from xR€ on the torus. The key idea is that the inductive representations
of the partition functions in (42) and (43) yield a procedure to sample from pgais and porq if We can
sample from the measures vj} for # € {ord, dis} and for all regions A. The procedure, which we call
the inductive contour sampling algorithm, is as follows. Consider poq. To sample a set of compatible,

matching contours with ordered external contours, we first sample I" from VZEd» then for each y € I' we
sample from vclffs ¥ and repeat inductively until there are no interiors left to sample from. The union of
all contours sampled is a set of matching and compatible contours, and these contours are distributed
as the restriction of (35) to contour configurations that arise from ordered edge configurations. This set
of contours can then be mapped to an edge set via the bijection of Lemma 3.2, and the distribution of
this edge set is pora. The procedure for sampling from gg;s is analogous. For a more detailed discussion
of the validity of this algorithm, see [25, Section 5].

By using the same procedure it is possible to efficiently approximately sample from gio,q and pg;s
provided one can efficiently approximately sample from the external contour measures v, and vA,.
Again, we refer to [25, Section 5] for further details.

The next lemma is an essential input for developing efficient approximate samplers for v;‘ as it
tells us we need only consider “small” contours. For 7 € {ord, dis} let vj,}"" be the probability measure
defined as in (68) and (69), but restricted to I with ||I'|| < m. The normalization factor for v?”” is thus
the contour partition function restricted to I" with ||T']| < m.

Lemma 6.1.  Supposed 2 2,q > qo, and € > 0. Then, letting N = [{A}| 1 1ay., form 2 C’'log(N/e)
2 n

with C' a large enough absolute constant,

1. If f > B, then VAT = VA llrv < e.

ord

A,
2. If B < B < P, then ||[Vi" — VA |y < e.

for all regions A.*

Proof.  This follows from the convergence of the cluster expansion for Z,(A) for the specified choices
of # and f. For details see, for example, [Proof of Lemma 13] 4 [25]. [

Lemma 6.2. Suppose d > 2 and q > qo. Then

1. For f = B, there are efficient sampling schemes for vA, and v..
A
ord*

3. For By < B < P. there is an efficient sampling scheme for v

2. For p > p. there is an efficient sampling scheme for v

In each case these algorithms apply for all regions A.

“The constant C' depends only on the constants ¢ in the bounds on K, (y) < exp(—cp||7||). These bounds are given by Lemmas 4.4
and 4.5 for § > f,., and in Appendix B for g, < g < B..
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Proof.  First we consider f = f.. By Lemma 5.1 there are efficient algorithms to approximate Zg;s(A)
and Z,q(A) for all regions A. With this, we can apply the approximate sampling algorithms given
in [25, Theorems 11 and 13]. We summarize the algorithm here, assuming that we want to sample a
collection of ordered contours (the disordered case is identical).

By Lemma 6.1 it is enough to obtain an e-approximate sample from v?"" with m = O(log(N /¢)).
List all contours of size at most m in C,q(A), and call this collection C. Order the vertices of A arbitrar-
ily as vi, ... ,vy. We will form a random collection I" = I'y of mutually external ordered contours step
by step. Begin with Iy = @. At step i, let C; be the subset of contours y in C such that i) v; € Int y (ii) y
is external to I';_y, and (iii) Int y N {v1, ... ,vi_1} = @. We can efficiently approximate the conditional
probability of each contour in C;, or of adding no contour at step i, by using Lemma 5.1 to approxi-
mate the relevant polymer partition functions. The result of this procedure is the desired approximate
sampling algorithm.

Sampling from v2, for # > f. also follows from the algorithm described above since we have an
FPTAS for computing Z,4(A), and similarly for vé‘is when f, < f < p.. n

Our strategy for efficiently approximately sampling from o4 and pais requires that we can also
efficiently approximately sample from v for small regions A when f > f. (and likewise from v
when f < f.). We cannot use the cluster expansion for this task since the disordered (resp. ordered)
ground state is unstable, and so instead our approach is based on the intuition from Lemma 4.6 that a

disordered region will quickly “flip” to being ordered when f > ..

Lemma 6.3. Suppose d > 2 and q > qo. Then

1. For [} > p. there is an e-approximate sampling algorithm for vé\is that runs in time polynomial in
1 /€ and exponential in ||0A||.

2. For f < p < p. there is an e-approximate sampling algorithm for vé‘rd that runs in time polynomial
in 1 /e and exponential in ||0A||.

In each case these algorithms apply for all regions A.

In our sampling algorithms we can allow exponential dependence on |[dA|| since by Lemma 6.1
we need only consider contours y with ||y|| = O(log(N/¢)).

Proof of Lemma 6.3. Consider the case f > [, and suppose A = Int y. The lemma follows from
Proposition 4.7 and Lemma 4.6. More precisely, set M according to Lemma 4.6, and then compute
Hﬁﬁ?(lm y, M) by Proposition 4.7. As in the proof of Lemma 5.1, compute accurate approximations
to the weight of each summand in Zg-i‘_’(lnt y,M). These approximations determine the probabilities

according to which we sample I' € H,"(Int y, M). By Lemma 4.6 the result is an e-approximation to
Int y
ord *

For f, < f < f. the proof is essentially the same given the inputs discussed in Appendix B. L]

Proof of Theorems 1.1 and 1.2, sampling. ~ We first consider the sampling part of Theorem 1.2, which
follows similarly to the proof of the approximate counting algorithm given in the previous section.
Given (i) A c Z“ such that G, is simply connected and (ii) a choice of wired or free boundary con-
ditions, Proposition 3.14 gives a contour y such that the partition function associated to Int y is Z} or
Z{\ up to an efficiently computable prefactor. Thus if f = fi. we can use Lemma 6.2 to implement the
inductive contour algorithm, but using ¢’-approximations to v, and v in place of the true measures.

If ¢ = €>/(9N?) where N = |{A} |(1T,,)*, the result is an e-approximate sample by [25, Lemma 12].
2°n
Here we are using N as a crude bound for the depth of the inductive contour algorithm.
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If f > p., then Lemma 6.1 tells us that it suffices to sample from v(’)‘r’c’," with m = O(log(N/¢)). The
consequence of this fact is that we can use the algorithm described above for f = fi., as each call for
an e-approximate sample of V(ji\is takes time exp(O(log N/¢e)) by Lemma 6.3 since each contour is of
size at most O(log(N/¢)). For f, < f < [f. an analogous argument applies with the roles of ord and
dis reversed.

For Theorem 1.1 the situation is similar to what we have just discussed, except for the fact that
uRC is not an ordered or a disordered measure: it includes configurations with ordered and disordered
external contours and includes the configurations with interfaces. If § > f., however, we have (see
Lemmas 4.1 and 4.3) [|uR€ — poullrv = exp(=Q(n?1)), and hence if € is not too small, we can
sample from poq as above. Mutatis mutandis the same argument applies for ug;s if f < f < f.. On
the other hand if € = exp(—Q(n9~")), then we can use the Glauber dynamics to sample efficiently by
Theorem 5.5.

For f = p. the situation is slightly different as the probability of both the ordered and dis-
ordered configurations are both of constant order, while the probability of configurations with
interfaces is still exp(—Q(n?~!)). The solution is to use the approximate counting algorithm of
Lemma 5.1 to approximate the relative probabilities of Q4 and Qg under xR and then to sam-
ple from each using the procedure above. Again if € = exp(—Q(nd‘l)) we can use the Glauber
dynamics.

Note that our sampling algorithm will not return any configurations with interfaces if € > 4¢~<#""",
but such configurations have probability smaller than e. On the other hand, if ¢ < 4¢P then
running Glauber dynamics may indeed return a configuration with interfaces. L]

7 | CONCLUSIONS

In this article, we have given efficient approximate counting and sampling algorithms for the ran-
dom cluster and g-state Potts models on Z? at all inverse temperatures § > 0, provided ¢ >
qo(d) and d > 2. We believe the ideas of this article will, however, allow for approximate count-
ing and sampling algorithms to be developed for a much broader class of statistical mechanics
models. The necessary conditions for the development of algorithms for a given model is that
there are only finitely many ground states, and that there is “sufficient z-functionality.” These
are the necessary ingredients for the implementation of Pirogov—Sinai theory, see [9]. Our meth-
ods allow for the presence of unstable ground states, a significant improvement compared to the
algorithms in [25].

Our results suggest that the algorithmic tasks of counting and sampling may be performed effi-
ciently for a fairly broad class of statistical mechanics models with first-order phase transitions, but
we leave a fuller investigation of this for future work. A related interesting questions is the exis-
tence of efficient algorithms for all § > f. in the presence of a second-order phase transition; we
are not aware of any results in this direction with the exception of the Ising model, that is, the
g = 2 state Potts model [23, 28]. To conclude we list some further open questions related to this
article.

1. Our algorithms are restricted to g > qo(d) with go(d) more than exponentially large in
d. Do efficient algorithms exist that avoid this constraint? Since the physical phenomena
behind our results are believed to hold for ¢ > 3 when d > 3, there is likely room for

improvement.
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2. On the torus, we obtained an FPRAS (as opposed to an FPTAS) for the partition function
because of the estimate on Zyn,e from Lemma 4.1: the contribution of Zi,,, cannot be
ignored when e < exp(—Q(n?~")). Fortunately, it is exactly when e is this small that the
Glauber dynamics mix in time polynomial in 1/¢, but of course Markov chain Monte Carlo is
a randomized algorithm. A method for systematically accounting for the interfaces that con-
tribute to Zynnes Would likely enable the development of an FPTAS. We leave this as an open
problem.

3. Our algorithms have at least two other features that could be improved. The first is the running
time: while our algorithms are polynomial time, the degree of the polynomial is not small. The
second is that our algorithms rely on a priori knowledge of whether or not f = f..

Both of these deficiencies have the potential to be addressed by Glauber-type dynamics as
described in [13]; see also [25, Section 7.2]. Proving the efficiency of these proposed algorithms
would be very interesting.

4. QOur deterministic algorithms for f§ > f. (and f < f.) have diverging running times as f | f.
(B 1 Pe). Are there deterministic algorithms that do not suffer from this dependence?

5. The algorithmic adaptation of other sophisticated contour-based methods, for example, [36],
would be also be quite interesting, particularly for applications to problems such as counting the
number of proper g-colorings of a graph. For recent progress on approximation algorithms for
g-colorings, see [4, 26, 33, 34].

ACKNOWLEDGMENTS

Part of this work was done while Will Perkins and Prasad Tetali were visiting Microsoft Research New
England. Part of this work was done while Tyler Helmuth and Will Perkins were visiting the Simons
Institute for the Theory of Computing. Tyler Helmuth was supported by EPSRC Grant EP/P003656/1.
Will Perkins is supported in part by NSF Grants DMS-1847451 and CCF-1934915. Prasad Tetali is
supported in part by the NSF Grant DMS-1811935. We thank Guus Regts and Ewan Davies for helpful
comments on a draft of this article.

REFERENCES

1.

K. S. Alexander, Mixing properties and exponential decay for lattice systems in finite volumes, Ann. Probab. 32
(2004), no. 1A, 441-487.

A. Barvinok, Combinatorics and complexity of partition functions, Algor. Comb. 30 (2017).

A. Barvinok and G. Regts, Weighted counting of solutions to sparse systems of equations, Comb. Probab. Comput.
28 (2019), no. 5, 696-719.

F. Bencs, E. Davies, V. Patel, and G. Regts, On zero-free regions for the anti-ferromagnetic Potts model on
bounded-degree graphs, Ann. Inst. Henri Poincare (D) Comb. Phys. 8 (2021), no. 3, 459-489.

A. Blanca and A. Sinclair, Random-cluster dynamics in 72, Probab. Theory Relat. Fields 168 (2017), no. 3-4,
821-847.

C. Borgs, J. Chayes, T. Helmuth, W. Perkins, and P. Tetali, Efficient sampling and counting algo-
rithms for the Potts model on 7% at all temperatures (extended abstract).Proc. 52nd Annu. ACM
SIGACT Symp. Theory Comput STOC 2020. New York, NY: Association for Computing Machinery, 2020,
pp. 738-751.

C. Borgs, J. Chayes, J. Kahn, and L. Lovasz, Left and right convergence of graphs with bounded degree, Random
Struct. Algorithms 42 (2013), no. 1, 1-28.

C. Borgs, J. T. Chayes, and P. Tetali, Tight bounds for mixing of the Swendsen—Wang algorithm at the Potts transition
point, Probab. Theory Relat. Fields 152 (2012), no. 3-4, 509-557.

C. Borgs and J. Z. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics, Commun.
Math. Phys. 123 (1989), no. 2, 305-328.

95U92I7 suowwo) aAleas) ajqedijdde ay) Aq pautanob aie sapie YO ‘@sn Jo sajni 1oy Aeiaqi suluQ Asjip Uo (suonipuod-pue-swidl/npakajaiadAxoidqlwod-Asm-Aieiqipuijuo//:sdiy) suonipuo) pue
Swd) dY3 935 "[£202/L0/22] uo Aieiqry suljup 431 ‘qeq [euoneN Asjaduag aduaimer eruloyied Jo Alun Ag 'LELLZeS/Z00L 0L/10p/npakaiiaqAxoldalwod-Aaim-Aieiqipuiuo//:sdiy woiy papeojumoq ‘L ‘2202 '8LrZ860L



BORGS ET AL. Wl LEY 167

10.

11

12.

13.

14.

15;

16.

17.

18.

19.

20.

21,

22.

23.

24.

25.

26.

27.
28.

29.
30.

31.

32

33.

34.

35.

36.
37.

38.

39.

40.

C. Borgs, R. Kotecky, and S. Miracle-Solé, Finite-size scaling for Potts models, J. Stat. Phys. 62 (1991), no. 3-4,
529-551.

S. Cannon and W. Perkins, Counting independent sets in unbalanced bipartite graphs, Proc. 14th Annu.
ACM-SIAM Sympos. Discr. Algor. (SODA), SIAM, 2020, pp. 1456—-1466.

K. Casel, P. Fischbeck, T. Friedrich, A. Gobel, and J. Lagodzinski, Zeros and approximations of Holant polynomials
on the complex plane. arXiv preprint arXiv:1905.03194, 2019.

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda, Fast algorithms at low temperatures
via Markov chains, Random Struct. Algorithms 58 (2021), no. 2, 294-321.

H. Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic lattice. In: Barlow, M., Slade, G. (eds)
Random Graphs, Phase Transitions, and the Gaussian Free Field. SSPROB 2017, Springer, Cham, 2020, vol. 304,
pp- 35-161.

H. Duminil-Copin, A. Raoufi, and V. Tassion, Sharp phase transition for the random-cluster and Potts models via
decision trees, Ann. Math. 189 (2019), no. 1, 75-99.

M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum, The relative complexity of approximate counting problems,
Algorithmica 38 (2004), no. 3, 471-500.

S. Friedli and Y. Velenik, Statistical mechanics of lattice systems: A concrete mathematical introduction, Cambridge
University Press, Cambridge, 2017.

A. Galanis, D. Stefankovi¢, and E. Vigoda, Inapproximability of the partition function for the antiferromagnetic
Ising and hard-core models, Comb. Probab. Comput. 25 (2016), no. 4, 500-559.

A. Galanis, D. Stefankovic, E. Vigoda, and L. Yang, Ferromagnetic Potts model: Refined #-BIS-hardness and related
results, SIAM J. Comput. 45 (2016), no. 6, 2004-2065.

R. Gheissari and E. Lubetzky, Mixing times of critical two-dimensional Potts models, Commun. Pure Appl. Math.
71 (2018), no. 5, 994-1046.

R. Gheissari and E. Lubetzky, Quasi-polynomial mixing of critical two-dimensional random cluster models,
Random Struct. Algorithms 56 (2020), no. 2, 517-556.

C. Gruber and H. Kunz, General properties of polymer systems, Commun. Math. Phys. 22 (1971), no. 2,
133-161.

H. Guo and M. Jerrum, Random cluster dynamics for the Ising model is rapidly mixing, Ann. Appl. Probab. 28
(2018), no. 2, 1292-1313.

T. Helmuth, M. Jenssen, and W. Perkins, Finite-size scaling, phase coexistence, and algorithms for the random
cluster model on random graphs. arXiv preprint arXiv:2006.11580, 2020.

T. Helmuth, W. Perkins, and G. Regts, Algorithmic Pirogov-Sinai theory, Probab. Theory Relat. Fields 176 (2020),
851-895.

M. Jenssen, P. Keevash, and W. Perkins, Algorithms for #BIS-hard problems on expander graphs, STAM J. Comput.
49 (2020), no. 4, 681-710.

M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989), no. 6, 1149-1178.

M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising model, SIAM J. Comput. 22
(1993), no. 5, 1087-1116.

R. Kotecky, Pirogov-sinai theory, Ency. Math. Phys. 4 (2006), 60—-65.

R. Kotecky and D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103 (1986), no.
3, 491-498.

R. Kotecky and S. Shlosman, First-order phase transitions in large entropy lattice models, Commun. Math. Phys.
83 (1982), no. 4, 493-515.

L. Laanait, A. Messager, S. Miracle-Solé, J. Ruiz, and S. Shlosman, Interfaces in the Potts model I: Pirogov-Sinai
theory of the Fortuin-Kasteleyn representation, Commun. Math. Phys. 140 (1991), no. 1, 81-91.

C. Liao, J. Lin, P. Lu, and Z. Mao, “Counting independent sets and colorings on random regular bipartite graphs,”
In: D. Achlioptas and L. A. Végh (eds.) Approximation, randomization, and combinatorial optimization. Algorithms
and techniques (APPROX/RANDOM 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

J. Liu, A. Sinclair, and P. Srivastava, A deterministic algorithm for counting colorings with 2-Delta colors, Proc.
2019 IEEE 60th Annu. Sympos. Found. Comput. Sci. (FOCS). IEEE, 2019, pp. 1380-1404.

F. Martinelli, E. Olivieri, and R. H. Schonmann, For 2-d lattice spin systems weak mixing implies strong mixing,
Commun. Math. Phys. 165 (1994), no. 1, 33-47.

R. Peled and Y. Spinka, Rigidity of proper colorings of 7. arXiv preprint arXiv:1808.03597, 2018.

S. A. Pirogov and Y. G. Sinai, Phase diagrams of classical lattice systems, Theor. Math. Phys. 25 (1975), no. 3,
1185-1192.

A. Sly, Computational transition at the uniqueness threshold, Proc. 51st Annu. IEEE Sympos. Found. Comput
Science, FOCS 2010, pages 287-296. IEEE, 2010.

A. Sly and N. Sun, Counting in two-spin models on d-regular graphs, Ann. Probab. 42 (2014), no. 6,
2383-2416.

D. Stefankovig, S. Vempala, and E. Vigoda, Adaptive simulated annealing: A near-optimal connection between
sampling and counting, J. ACM (JACM) 56 (2009), no. 3, 18.

95U92I7 suoww o) aAleas) ajqedijdde ay) Aq pautanob aie sapie YO ‘@sn Jo sajni 1oy Aeiaqi] suluQ Adjipn Uo (suonipuod-pue-swidl/npakajaiadAxoidqlwod-Aem-Aieiqipuijuo//:sdiy) suonipuo) pue
Swd) dY3 9935 "[£202/.0/22] uo Aieiqry suljuo 431 ‘qeq [euoneN Asjaduag aduaimer eruloyied Jo Alun Ag 'LELLZ eS1/Z00L 0L/10p/npaKajiaqAxoidalwod-Aaim-Aieiqipuijuo//:sdiy woiy papeojumoq ‘L ‘2202 '8LrZ860L



168 Wl LEY BORGS ET AL.

41. M. Ullrich, Comparison of Swendsen-Wang and heat-bath dynamics, Random Struct. Algorithms 42 (2013), no. 4,
520-535.

42. D. Weitz, Counting independent sets up to the tree threshold, Proc. 38th Annu. ACM Sympos. Theory.Comput.,
STOC. ACM; 2006, pp. 140-149.

How to cite this article: C. Borgs, J. Chayes, T. Helmuth, W. Perkins, and P. Tetali, Efficient
sampling and counting algorithms for the Potts model on Z° at all temperatures, Random
Struct. Alg. 63 (2023), 130-170. https://doi.org/10.1002/rsa.21131

APPENDIX A: COUPLING THE POTTS AND RANDOM CLUSTER MODELS

Here we review the standard Edwards—Sokal coupling between the Potts and random cluster models
and indicate how one can obtain counting and sampling algorithms for the Potts model from counting
and sampling algorithms for the random cluster model. For more details on the couplings between the
Potts model and random-cluster measures, see [14, Section 1.2.2].

Let G = (V, E(G)) be a finite graph. Then the standard Edwards—Sokal coupling put the g-color
Potts model at inverse temperature f on the same probability space as the random cluster model with
parameters g and p = 1—e~#. To obtain a Potts configuration we sample a random cluster configuration
A, then assign one of the ¢ colors uniformly at random to each of the connected components of the
graph G, = (V, A); note that isolated vertices are connected components. Each vertex is then assigned
the color of its connected component. This gives an efficient algorithm to sample from the Potts model
given a sample from the random cluster model. Moreover,

ZPos(g) = PIE@IZRC(] — P ) | (Al)

which gives us an FPTAS (FPRAS) for ZP°" given an FPTAS (FPRAS) for ZR€.

We can also couple the Potts model with monochromatic boundary conditions to the random cluster
model with wired boundary conditions. For this, let us specialize to finite induced subgraphs (A, E(A))
of Z¢. Define the boundary of A to be dA := {i € A : 3j € A%, (i,j) € E(Z%)}. Recall the
definition of the random cluster model ;/;\ with wired boundary conditions from Section 1.3. Given a
color r € [g], the allowed colorings for the Potts model with -monochromatic boundary conditions on
A are

QN ={celgl*:6,=rVveoA} . (A2)

The corresponding Gibbs measure and partition function are:

_ﬂls'#n-
P Hipeeme ™
P‘AOttS,r(O') = . Potts)r ? o € Q,(A)
Zy (B
Z/l:mts,r(ﬂ) — Z e—ﬂla,-#_,- .
5€Q,(A)

A simple extension of the Edwards—Sokal coupling then gives the following facts. Given a sample A

from g} one can obtain a sample from yf\"“s" by coloring all vertices in dA or connected to dA by
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the edges in A with color r, and assigning one of the g colors uniformly at random to the remaining
connected components of the graph (A, A). Moreover, we have the relation

gZX () = e PEVIZE(1 — e g) . (A3)

Again this shows that efficient counting and sampling algorithms for the Potts model with monochro-
matic boundary conditions follow from efficient counting and sampling algorithms for the random
cluster model with wired boundary conditions.

APPENDIX B: PROOFS FOR g, < f < f,

B.1 | LEMMA 5.1 (III)

The proof of Lemma 5.1 in the case f, < f < f. is the same, mutatis mutandis, as for f > f.. The
necessary changes are that (i) the roles of the ordered and disordered contours are exchanged, and (ii)
some of the ingredients from Sections 5 and 6 were stated only for f > f., and hence versions for
fn < P < P, are necessary. We outline how to obtain these versions here.

As explained in [8, Appendix A], [8, Lemma 6.3 (i) and (ii)] applies when [8, (A.1)] holds. In fact,
the arguments apply if

f > max {c1 log(dC), > 125(;} : (B1)

where C is the constant from [8, Lemma 5.8] and C; is a sufficiently large constant depending only on
d. To verify this it is enough to check that [8, (A.2)] holds (up to a change in the constant 8).>Thus for
qo sufficiently large [8, Lemma 6.3 (i) and (ii)] apply when f, < f < f.. In particular, by following
the proofs from f > f. we obtain that when f, < f < f.

1. The conclusions of Lemma 4.2 hold with the roles of ord and dis reversed. The fact that a,g > 0
is contained in [8, Lemma A.3].

2. The conclusion of Lemma 4.5 holds with ord replaced by dis.

3. The conclusion of Lemma 4.6 holds with the roles of ord and dis reversed and

2 8q 2

log — +
Aord € Aord

M > (x+Dllyll.

The factor four (as opposed to three) in M arises in the computation of the lower
bound on Z.*(A,M), as (in the notation of the proof of Lemma 4.6) Ext " may be of
size ||y]l.

Lastly, the conclusion of Proposition 4.7 holds with dis changed to ord. The proof is very
similar to the proof of Proposition 4.7, but using Lemmas 3.5 and 3.6 in place of Lemmas 3.7
and 3.8.

Proof of Lemma 5.1 (iii). Using the ingredients above, this follows exactly as in the proof of
Lemma 5.1 (i), that is, for § > f.. n

3Our choice of 3/4 in (B1) is somewhat arbitrary; the same conclusion would hold for any number strictly larger than 2/3.
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B.2 | THEOREMS 1.1 AND 1.2

These proofs are exactly as for f > f. provided the conclusions of Lemma 4.3 hold with dis replaced
by ord. This is straightforward to obtain by imitating the proof of Lemma 4.3, using (as discussed in
the previous section) that the conclusion of Lemma 4.2 hold with the roles of ord and dis reversed.

APPENDIX C: CONTOUR COMPUTATIONS USING SUBGRAPHS OF (%Tﬂ)*

The next lemma shows that computations relating to contours y can be implemented using only y, the
connected subgraph of (%'ﬂ‘,‘{ )* that corresponds to y by the construction in Section 3.1.

Lemma C.1. Let y and y’ be contours, and let y and y' be the corresponding subgraphs of (%'I[‘,‘f)*.
Then giveny, y’,

1. d(y,y’) can be computed in time O(|{V(y)}| [{V()}D),
2. The set Int y N'T¢ can be computed in time O(|{V(y)} 1,
3. ||yl can be computed in time O(|{V(y)}|).

Proof.  Each vertex in (%’]I‘ﬁ )* corresponds to a (d — 1)-dimensional hypercube in T¢. For each
pair of such hypercubes we can compute the distance between them in constant time, which implies
the first claim. The third claim follows similarly, since the set of edges passing through a given
(d — 1)-dimensional hypercube can be determined in constant time.

For the second claim, we first determine the set of edges intersecting the (d — 1)-dimensional
hypercubes corresponding to y. We can then determine Inty n T¢ in time O(||y|®) by
Lemma 3.10. "
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