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Kallenberg (2005) provided a necessary and sufficient condition
for the local finiteness of a jointly exchangeable random measure
on R2

+. Here we note an additional condition that was missing in
Kallenberg’s theorem, but was implicitly used in the proof. We also
provide a counter-example when the additional condition does not
hold.

1. Characterization of local finiteness for jointly exchangeable
measures on R2

+. Kallenberg [7, Theorem 9.24] established a represen-

tation for all jointly exchangeable random measures on R2
+. This represen-

tation theorem has been the bedrock of recent developments in the study
of sparse graph limits [8, 9, 2] and non-parametric Bayesian inference of
network data [4]. In this context, it is natural to restrict one’s attention to
locally finite random measures. For the convenience of the reader, we include
a definition of locally finite random measures. [5, Definition 9.1.I].

Definition 1 (Locally-finite random measures). A random measure on
R2
+ is called locally finite if with probability 1, ξ(B) < ∞ for all bounded

measurable B ⊂ R2
+.

Kallenberg [7, Proposition 9.25] also states a characterization for local finite-
ness of any such exchangeable random measure. On closer inspection, it
turns out that the local finiteness characterization has an extra implicit
condition. To redress this issue, we include the complete statement of the
characterization below (see Theorem 1.3) . Further, to make our treatment
self-contained, we also include a complete proof in this section. We empha-
size that the proof is almost the same as Kallenberg’s original argument,
once we add the additional condition. We begin by recalling the notion of a
jointly exchangeable measure. Let B(R+) denote the set of all Borel subsets
of R+.

This article will appear as the supplementary material to [3].
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Definition 2. A measure ξ on R2
+ is jointly exchangeable if ξ(φ−1(A)×

φ−1(B))
d
= ξ(A× B) for every measure preserving map φ : R+ → R+, and

for all A,B ∈ B(R+).

Theorem 1.1 ([7]). A random measure ξ on R2
+ is jointly exchangeable

iff a.s.

ξ =
∑
i,j

f(α, ϑi, ϑj , ζ{i,j})δτi,τj + βλD + γλ2

+
∑
j,k

(
g(α, ϑj , χjk)δτj ,σjk + g′(α, ϑj , χjk)δσjk,τj

)
+
∑
j

(
h(α, ϑj)(δτj ⊗ λ) + h′(α, ϑj)(λ⊗ δτj )

)
+
∑
k

(
l(α, ηk)δρk,ρ′k + l′(α, ηk)δρ′k,ρk

)
,

(1.1)

for some measurable functions f ≥ 0 on R4
+, g, g′ ≥ 0 on R3

+, and h, h′, l, l′ ≥
0 on R2

+, a collection of iid uniform random variables {ζ{i,j} : i ≤ j}, some
independent, unit rate Poisson processes {(τj , ϑj)}j≥1 and {(σij , χij)}j≥1 on
R

2
+ for each i ≥ 1, and {(ρj , ρ′j , ηj)} on R+

3 , and an independent set of ran-
dom variables α, β, γ ≥ 0. The latter can then be chosen to be non-random
iff ξ is extreme.

Our interest centers around random adjacency measures, which are purely
atomic almost surely. The next corollary, obtained as an immediate con-
sequence of Theorem 1.1, provides a representation theorem for all jointly
exchangeable random atomic measures on R2

+.

Corollary 1.2. A purely atomic random measure ξ on R2
+ is jointly

exchangeable iff a.s.

ξ =
∑
i,j

f(α, ϑi, ϑj , ζ{i,j})δτi,τj

+
∑
j,k

(
g(α, ϑj , χjk)δτj ,σjk + g′(α, ϑj , χjk)δσjk,τj

)
+
∑
k

(
l(α, ηk)δρk,ρ′k + l′(α, ηk)δρ′k,ρk

)
,(1.2)

where the functions f, g, g′, l, l′, and the stochastic components are the same
as Theorem 1.1. Further, α ≥ 0 may be chosen to be non-random iff ξ is
extreme.
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Proof. ξ is almost surely atomic, and thus all components with Lebesgue
contributions vanish. This immediately leads to the representation of inter-
est.

To study local finiteness of these random measures, it suffices to establish
this characterization in the extreme case, when α is a constant, and thus
for convenience of notation, we will suppress the dependence on α in the
subsequent discussion. For any function φ, we denote φ̂ = φ ∧ 1, and define

f1(·) =

∫ ∞
0

∫ 1

0
f̂(·, y, z) dz dy f2(·) =

∫ ∞
0

∫ 1

0
f̂(y, ·, z) dy dz.

Further, we define

g1(·) =

∫ ∞
0

ĝ(·, y) dy, g′1(·) =

∫ ∞
0

ĝ′(·, y) dy

For conciseness of notation, for any measurable function φ : R+ → R, we
set λφ =

∫∞
0 φ(y) dy. To avoid confusion, for B ∈ B(R+), we denote the

Lebesgue measure as λ{B}. Similarly, for any point process η = {xj : j ≥
1} ⊂ R+, we set ηφ =

∑
j≥1 φ(xj). Further, for φ : R2

+ → R, we define

η2φ =
∑

i,j φ(xi, xj).

Theorem 1.3. For a fixed α, the random measure (1.1) is a.s. locally
finite iff the following conditions are satisfied:

(i) λ(l̂ + l̂′ + ĥ+ ĥ′) <∞.
(ii) λ{g1 =∞} = λ{g′1 =∞} = 0.

(iii) λ(ĝ1 + ĝ′1) <∞.
(iv) λ{fi =∞} = 0 and λ{fi > 1} <∞ for i = 1, 2.
(v)

∫∞
0

∫∞
0

∫ 1
0 f̂(x, y, z)1{f1(x) ∨ f2(y) ≤ 1} dz dy dx <∞.

(vi)
∫∞
0

∫ 1
0 f̂(x, x, z) dz dx <∞.

This theorem is a modification of Kallenberg [7, Proposition 9.25]. The main
difference is that our theorem contains the extra condition (ii), which was
missing in Kallenberg [7, Proposition 9.25], but was used implicitly in the
proof. We provide a complete proof of Theorem 1.3 in the rest of this section.
To establish Theorem 1.3, we need a preliminary lemma about almost sure
convergence of Poisson integrals.

Lemma 1.4 ([7, Theorem A3.5]). Let η be a unit rate Poisson process
on R+. Then for any measurable function f : R+ → R+ and f ≥ 0, we have
ηf < ∞ a.s. iff λf̂ < ∞. Further, let h : R2

+ → R+ be measurable with

h ≥ 0. Setting hi = λj(ĥ) for j 6= i, we have, η2h <∞ a.s. iff
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(i) λ{h1 =∞} = λ{h2 =∞} = 0,
(ii) λ{h1 > 1} <∞, λ{h2 > 1} <∞,

(iii)
∫∞
0

∫∞
0 ĥ(x, y)1{(h1(x) ∨ h2(y) ≤ 1)}dy dx <∞

(iv)
∫∞
0 ĥ(x, x)dx <∞

We refer the interested reader to [1, Proposition A.2] for an independent
proof in a slightly different setup. Given Lemma 1.4, the proof is relatively
straightforward. We include a proof here for the sake of completeness. We
will also use the following elementary lemma about convergence of a random
series of independent non-negative random variables, which is a consequence
of the Kolmogorov three series theorem.

Lemma 1.5. Let Z1, Z2, · · · be an independent sequence of non-negative
random variables. Then

∑
j Zj < ∞ almost surely if and only if

∑
j E[1 ∧

Zj ] <∞.

Proof of Theorem 1.3. The measure ξ is jointly exchangeable – thus
for establishing local finiteness, it suffices to restrict the measure to [0, 1]2,
without loss of generality. Then we can write

ξ([0, 1]2)

=
∑
i,j

f(ϑi, ϑj , ζ{i,j})1{τi ≤ 1, τj ≤ 1}+
√

2β + γ

+
(∑
j,k

g(ϑj , χjk)1{τj ≤ 1, σjk ≤ 1}+
∑
j,k

g′(ϑj , χjk)1{σjk ≤ 1, τj ≤ 1}
)

+
∑
j

h(ϑj)1{τj ≤ 1}+
∑
j

h′(ϑj)1{τj ≤ 1}

+
∑
k

(
l(ηk)1

{
ρk ∨ ρ′k ≤ 1

}
+ l′(ηk)1

{
ρ′k ∨ ρk ≤ 1

})
.

The terms
√

2β and γ are trivially finite for all random variables β, γ ≥ 0.
Introduce the point processes

ϑ̃ =
∑
j

δϑj1{τj ≤ 1} η̃ =
∑
k

δηk1
{
ρk ∨ ρ′k ≤ 1

}
.

We note that these are unit point Poisson processes on R+, and thus the
last four terms in (1) are finite if and only if ϑ̃h + ϑ̃h′ + η̃l + η̃l′ < ∞
almost surely. An application of Lemma 1.4 immediately characterizes this
convergence, and yields condition (i) in Theorem 1.3.
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Next, we establish that conditions (ii) and (iii) in Theorem 1.3 are suf-
ficient to guarantee almost sure finiteness of the g, g′ terms in (1). To this
end, condition on the Poisson process {(τj , ϑj)}j≥1. Define

χ̃j =
∑
k

δχjk
1{σjk ≤ 1}.

Conditionally on the Poisson point process {(τj , ϑj)}j≥1, (χ̃j)j≥1 forms a
collection of independent unit Poisson point process on R+. Note that Con-
dition (ii) of Theorem 1.3 implies

∑
k g(ϑj , χjk)1{τj ≤ 1, σjk ≤ 1} < ∞

almost surely for all j ≥ 1. Thus, for all j ≥ 1, the random variables∑
k g(ϑj , χjk)1{τj ≤ 1, σjk ≤ 1} are independent R+ valued random vari-

ables. To characterize the convergence of this random series, we condition
on {(ϑj , τj)}j≥1 and apply Lemma 1.5. This yields that the series is finite
almost surely iff∑

j

E

[
1 ∧

∑
k

g(ϑj , χj,k)1{σjk ≤ 1}
∣∣∣ϑj , τj]1{τj ≤ 1} <∞.(1.3)

Let us denote ψ(x) = 1− e−x. Using 1∧x
2 ≤ ψ(x) < 1∧x for x > 0, it is easy

to see that (1.3) is equivalent to∑
j≥1

E

[
ψ
(
χ̃jg(ϑj , ·)

)
|ϑj , τj

]
1{τj ≤ 1}

=
∑
j≥1

ψ
(∫ ∞

0
ψ(g(ϑj , y)) dy

)
1{τj ≤ 1} <∞

where the last equality follows from [7, Lemma A3.6]. Note that this condi-
tion is satisfied once (ii) is given, and ensures the almost sure convergence
of the sum, conditioned on the process {(ϑj , τj)}j≥1. Finally, we “uncondi-
tion” on the point process {(ϑj , τj)}j≥1, and note that given condition (ii),
the almost sure convergence of the g term in (1) is equivalent to

ϑ̃

(
ψ
(∫ ∞

0
ψ(g(·, y)) dy

))
<∞

almost surely. To characterize the convergence of this sum, we again apply
Lemma 1.4, and note that this finiteness is equivalent to∫ ∞

0
ψ
(∫ ∞

0
ψ ◦ g(x, y)dy

)
dx <∞.

Finally, using 1∧x
2 ≤ ψ(x) ≤ 1 ∧ x, it is not too hard to see that the con-

dition above is equivalent to (iii). The argument for the g′ is exactly same,



6 BORGS, CHAYES, DHARA, SEN

and is thus omitted. This establishes the sufficiency of (ii) and (iii) for the
almost sure finiteness of the relevant terms in (1). It remains to establish
the necessity of these conditions. Indeed, consider the function

g(x, y) =

{
1 ifx ∈ [0, 1], y ∈ [0, 1] ∪ [2, 3] ∪ · · ·
0 o.w.

(1.4)

In this case, condition (ii) is violated, and it is easy to see that the cor-
responding g term in (1) is infinite with positive probability. Thus (ii) is
indeed necessary. Given (ii), the rest of the proof above is necessary and
sufficient, which establishes the necessity of (iii) as well.

Finally, we need to establish necessary and sufficient conditions for the
almost sure finiteness of f term in (1). To this end, first condition on the
point process {(ϑj , τj)}j ≥ 1, and using Lemma 1.5, the finiteness in this
case is equivalent to∑

i,j

E[1 ∧ f(ϑi, ϑj , ζ{i,j})|ϑi, τi]1{τi ∨ τj ≤ 1}

=
∑
i,j

f̂3(ϑi, ϑj)1{τi ≤ 1, τj ≤ 1} <∞,

where we define f̂3(x, y) =
∫ 1
0 f̂(x, y, z)dz. Finally, we “uncondition” on the

point process {(ϑj , τj) : j ≥ 1}, and note that the convergence of the f term
in (1) is equivalent to∑

i,j

f̂3(ϑi, ϑj)1{τi ≤ 1, τj ≤ 1} = ϑ̃2f̂3 <∞

almost surely. The rest of the proof follows by a direct application of Lemma
1.4, and noting that 0 ≤ f̂3 ≤ 1.

Remark 1. (1.4) clearly constructs a counter-example for the local
finiteness without condition (ii) in Theorem 1.3.

2. Characterization of random adjacency measures. The next
result characterizes all random adjacency measures on R

2
+. To keep the

discussion self-contained, we recall the concepts under consideration. In the
subsequent discussion, N (R2

+) denotes the set of locally finite counting mea-
sures on R2

+, equipped with the vague topology.

Definition 3 (Random adjacency measure). An adjacency measure is
a measure ξ ∈ N (R2

+) such that ξ(A×B) = ξ(B×A) for all A,B ∈ B(R+).
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A random adjacency measure is a N (R2
+) valued random variable that is

almost surely an adjacency measure. It is called exchangeable if ξ(φ−1(A)×
φ−1(B))

d
= ξ(A×B) for every measure preserving map φ : R+ → R+.

Definition 4 (Multigraphex). A multigraphex is a tripleW = (W,S, I)
such that I ∈ `1, S : R+ 7→ `1 is a measurable function, and W : R2

+ ×
N0 7→ R+ is a measurable function satisfying W (x, y, k) = W (y, x, k),∑∞

k=0W (x, y, k) = 1, for any x, y ∈ R+ and k ∈ N0. We will assume
throughout that, min{

∑
k≥1 S(·, k), 1} is integrable. Further, setting µW (·) =∫

(1−W (·, y, 0))dy, we assume that

(a) Λ({x : µW (x) =∞}) = 0 and Λ({x : µW (x) > 1}) <∞,
(b)

∫
(1−W (x, y, 0))1{µW (x) ≤ 1}1{µW (y) ≤ 1}dydx <∞,

(c)
∫

(1−W (x, x, 0))dx <∞.

Definition 5 (Adjacency measure of a multigraphex). Given any multi-
graphex W = (W,S, I), define ξW , the random adjacency measure generated
by W as follows:

ξW =
∑
i 6=j

ζijδ(θi,θj) +
∑
i

ζiiδ(θi,θi) +
∑
j,k

g(θj , χjk)
(
δ(θj ,σjk) + δ(σjk,θj)

)
+
∑
k

h(η′′k)
(
δ(ηk,η′k) + δ(η′k,ηk)

)
,

ζij = r, if
r−1∑
l=0

W (vi, vj , l) ≤ U{i,j} ≤
r∑
l=0

W (vi, vj , l),

g(θj , χjk) = r, if

r−1∑
l=0

S(vj , l) ≤ χjk ≤
r∑
l=0

S(vj , l),

h(η′′k) = r, if
r−1∑
l=0

I(l) ≤ η′′k ≤
r∑
l=0

I(l).

where (U{i,j})i,j≥1 is a collection of independent uniform[0,1] random vari-
ables, {(θj , vj)}j≥1, {(χjk, σjk)}k≥1 for all j ≥ 1 are unit rate Poisson point
processes on R2

+, and (ηk, η
′
k, η
′′
k)k≥1 is a unit rate Poisson point processes

on R3
+, where all the above Poisson point processes are independent of each

other and (U{i,j})i,j≥1.

Proposition 2.1. Every random adjacency measure is the adjacency
measure corresponding to some (possibly random) multigraphex.
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Remark 2. The corresponding characterization for graphexes was stated
in Veitch and Roy [8, Theorem 4.9]. Their proof is based on the Kallenberg
representation theorem for exchangeable random measures on R2

+ [6], and
the characterization for exchangeable random measures to be locally finite
a.s. [7, Prop 9.25]. The missing condition in the local finiteness criterion [7,
Prop 9.25], however, necessitates a slight modification to their proof. Armed
with Theorem 1.3, we generalize the result of Veitch and Roy [8, Theorem
4.9] to multigraphexes, and provide a proof sketch in the rest of this section.

Armed with Corollary 1.2 and Theorem 1.3, we furnish a proof of Propo-
sition 2.1.

Proof of Proposition 2.1. Given Corollary 1.2 and Theorem 1.3, the
proof is similar to that of Theorem 4.7, 4.9 in [8]. Thus we sketch the proof,
and refer the interested reader to [8] for complete details.

Let ξ be a random adjacency measure. Corollary 1.2 immediately implies
that ξ has a representation of the form (1.2). Now, symmetry of ξ enforces
f(·, x, y, ·) = f(·, y, x, ·), g = g′ and l = l′. Further, ξ ∈ N (R2

+), which
specifies that f , g and l are actually N0 valued in this case. Given these
observations, for any fixed a and k ∈ N, we define

W (a, x, y, k) =λ{z ∈ [0, 1] : f(a, x, y, z) = k}.
S(a, x, k) =λ{y ∈ R+ : g(a, x, y) = k}
I(a, k) =λ{y ∈ R+ : l(a, y) = k}.

Finally, we set W (a, x, y, 0) = 1−
∑∞

k=1W (a, x, y, k). Note that ξ is locally
finite, and thus by Theorem 1.3 condition (ii), g1 <∞ for Lebesgue almost
all x ∈ R+, ensuring that S(a, x.k) is well defined. For all other x, we define
S(a, x, k) arbitrarily in `1. Similarly, Theorem 1.3 condition (i) ensures that
I is well defined almost surely. Also, we note that f(·, x, y, ·) = f(·, y, x, ·)
enforces the symmetry of W . Finally, it is easy to see that the constraints
of Theorem 1.3 translate directly to the integrability conditions imposed on
multigraphexes in Definition 4.

Finally, it remains to establish that the random adjacency measure ξ is
completely specified, given the multigraphex (I, S,W ). This follows from the
arguments delineated in the proof of [8, Theorem 4.7], and is thus omitted.

We end this section with a criterion for the multigraphex in Proposi-
tion 2.1 to be non-random. The proof can be carried out in an identical
manner for point processes in N (R2

+) as [2, Lemma 3.4] and thus omitted.
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Proposition 2.2. Let Γ ∈ N (R2
+) be a jointly exchangeable adjacency

measure. Then Γ is extremal if and only if for all 0 < r < r′ <∞, Γ([0, r)2∩
·) and Γ([r, r′)2 ∩ ·) are independent.
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