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We investigate structural properties of large, sparse random graphs
through the lens of sampling convergence (Borgs et al. (Ann. Probab. 47
(2019) 2754–2800). Sampling convergence generalizes left convergence to
sparse graphs, and describes the limit in terms of a graphex. We introduce
a notion of sampling convergence for sequences of multigraphs, and estab-
lish the graphex limit for the configuration model, a preferential attachment
model, the generalized random graph and a bipartite variant of the configura-
tion model. The results for the configuration model, preferential attachment
model and bipartite configuration model provide necessary and sufficient con-
ditions for these random graph models to converge. The limit for the configu-
ration model and the preferential attachment model is an augmented version
of an exchangeable random graph model introduced by Caron and Fox (J. R.
Stat. Soc. Ser. B. Stat. Methodol. 79 (2017) 1295–1366).

1. Introduction.

1.1. Aims and informal overview. The study of large networks, arising from applications
in the social, physical and life sciences, has witnessed meteoric growth over the past two
decades. It is widely believed that a thorough understanding of the typical structural prop-
erties of these large networks can often provide deep insights into the workings of many
social, economic and biological systems of practical interest. Random graph models have
been extensively used to study properties of these networks, with many recent models aimed
at capturing specific properties of real world networks (we refer the interested reader to [24]
and the references therein for an overview).

In this light, it is desirable to study the asymptotic structural properties of random graphs.
A natural question here is to identify a deterministic structure that captures the typical be-
havior of these random graph models. This question is analogous to deriving strong law of
large numbers, but now on the space of graphs. The first challenge is to figure out the topol-
ogy needed on the space of graphs for such convergence results. In case of dense graphs,
where the number of edges in the graphs scale quadratically with the number of vertices, the
theory of graph limits [9, 16, 17, 23, 35–37] provides the relevant framework to obtain this
asymptotic description, and an extensive line of work [8, 20, 41] is aimed at describing the
asymptotic behavior of dense random graphs. However, this framework fails to provide non-
trivial information about sparse graph sequences, and thus motivates a recent line of work to
extend the theory of graph limits to the sparse setting [7, 10–14, 28].
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In this paper, we derive limits of fundamental sparse random graphs with respect to the
notion of sampling convergence introduced recently by Borgs et al. [12]. Empirical evidence
suggests that typical real-world networks are composed of high degree vertices, called “hubs,”
which form a skeleton of the network, and low degree vertices that constitute the body of the
network [3, 39]. The limiting object under sampling convergence, called graphex, makes this
distinction explicit; see Section 1.5 for a more detailed discussion.

Our principal contributions in this article are as follows.

Convergence of multigraphs. We introduce a notion of sampling convergence for multi-
graphs, generalizing the notion of sampling convergence introduced in [12], and identify the
resulting limit object, which we call a multigraphex. We also formulate an equivalent notion
of convergence in terms of certain two-dimensional point processes; it is this representation
we use when establishing the limits of the various random models considered in this paper.

Limits of random graphs. We deduce the (multi)graphex limit of fundamental random graph
models, under the sparse setting—the configuration model (Theorem 1.2), a preferential at-
tachment model (Theorem 1.6), the generalized random graph (Theorem 1.7) and a bipartite
variant of the configuration model (Theorem 1.10). The proof techniques here are completely
disjoint from the previous results in the dense settings [8, 20, 41]. In the dense case, graph
convergence is equivalent to convergence of subgraph densities, which are real-valued ran-
dom variables. Such equivalence breaks down in the sparse setting. To this end, we make use
of an idea, put forth in [12], that sampling convergence is equivalent to weak convergence
of certain two-dimensional point processes (Proposition 1.1). The relevant point processes
for the configuration model, the preferential attachment model and the bipartite configura-
tion model all have a specific “rank-one” structure (see Remark 5 below), which in turn
allows us to conclude that weak convergence is equivalent to the weak convergence of a one-
dimensional Lévy process. This facilitates a precise characterization of the necessary and
sufficient conditions for sampling convergence in these random graph models. To illustrate
the “nonrank-one case,” we analyze the generalized random graph, and derive sufficient con-
ditions for sampling convergence. Our analysis in this case provides a fairly general template,
and may prove to be useful for establishing sampling convergence for other graph sequences
of practical interest.

New interpretation of the Caron–Fox model. Finally, our results provide a novel, alternative
perspective on the Caron and Fox [19] model, which has induced immense recent interest
in theoretical statistics. Specifically, a corollary of our result (Theorem 1.2) establishes that
Caron–Fox graphs can be interpreted as the limit of samples from a configuration model or
preferential attachment random graphs.

1.2. Notation and terminologies. Before we progress further, we introduce some nota-

tion used throughout our subsequent discussion. We use the standard notation of
P−→, and

d−→
to denote convergence in probability and in distribution, respectively. We use the Bachmann–
Landau notation O(·), o(·), �(·), �(·), ω(·) for asymptotics of real numbers. R+ = [0,∞),
R+ = R+ ∪ {∞}, N0 = N∪ {0} and ⊗: = product of measures.

Given a multigraph G, we use the generic notation V(G), E(G) to denote the set of vertices
and edges, respectively, and set v(G) = |V(G)|. Further, we denote the number of nonloop
edges as e(G). Let Gf denote the set of all multigraphs with finite number of vertices and
edges. Thus Gf is countable and we equip this space with discrete topology.

For any topological space X, B(X) will denote the Borel sigma-algebra of X. We define
a measure on a metric space to be locally finite if it assigns finite measure to all bounded
Borel sets. Let M(R+) and M(R2+) denote the space of locally finite Borel measures on R+
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and R
2+, respectively, equipped with the vague topology. N (R+) ⊂ M(R+) and N (R2+) ⊂

M(R2+) will denote the subspaces of counting measures, equipped with the vague topology.
For a Polish space S , let P(S) denote the space of all probability measures on (S,B(S)),
equipped with the topology for weak convergence of probability measures. For an S-valued
random variable X, let L(X) denote the law of X, which is an element of P(S).

We will also need the notion of completely random measures, defined as random measures
μ ∈ M(R+) that obey the condition that for all finite families of bounded disjoint sets (Ai)i≤k

in B(R+), (μ(Ai))i≤k is an independent collection of random variables. We will in particular
be interested in completely random measures that are stationary, that is, completely random
measures μ such that the distribution of μ([t, t + s]) depends only on s for any t, s ∈ R+.
These can be represented in the form

(1.1) μ = aλ +∑
i≥1

wiδθi
,

where {(wi, θi)}i≥1 is a Poisson point process on (0,∞)×R+ with rate measure ρ(dw)λ(dθ),
with ρ obeying certain integrability conditions; see Appendix B for details. We use the nota-
tion CRM(aλ,ρ × λ) for the law of a completely random measure of the form (1.1).

Finally, given a topological space X and an interval I ⊆ R, we use D(I,X) to denote the
set of càdlàg functions f : I → X, that is, the set of functions f that are right continuous,
and have limits from the left.

1.3. Sampling convergence and multigraphexes.

Sampling convergence. The following two definitions are straight forward generalizations
of the notion of sampling and sampling convergence from the simple graph setting of [12] to
our multigraph setting.

DEFINITION 1 (p-sampling). For a multigraph G, the p-sampled multigraph (denoted
by Smpl(G,p)) is an unlabeled random graph obtained by keeping each vertex independently
with probability p, taking the induced edges on the kept vertices and deleting the isolated
vertices.

DEFINITION 2 (Sampling convergence). Let (Gn)n≥1 be a sequence of (multi)graphs.
(Gn)n≥1 is said to be sampling convergent if for all t > 0, Smpl(Gn, t/

√
2e(Gn)) converges

in distribution in Gf .

The distribution of the sampled graph is characterized by the subgraph frequencies, and
thus relates to left convergence. In order for the sampled subgraph to be informative, p is
to be chosen such that the sampled subgraph is nonempty. The choice of p ∼ 1/

√
e(Gn)

ensures that the sampled subgraph has �(1) number of edges in expectation, and hence also
an expected number of vertices that is �(1). Note that in the sparse setting, this holds since
we removed the isolated vertices—without this, the expected number of sampled vertices,
tv(Gn)/

√
2e(Gn), would diverge.

Graphexes and adjacency measures. Next, we formally introduce the limiting objects for
sampling convergence.

DEFINITION 3 (Random adjacency measure). An adjacency measure is a measure ξ ∈
N (R2+) such that ξ(A×B) = ξ(B ×A) for all A,B ∈ B(R+). A random adjacency measure
is a N (R2+) valued random variable that is almost surely an adjacency measure. It is called

exchangeable if ξ(φ−1(A) × φ−1(B))
d= ξ(A × B) for every measure preserving map φ :

R+ →R+.
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Expressing a random adjacency measure ξ as

ξ =∑
ij

βij δ(αi ,αj ),

where βij ∈ N0, one can naturally associate an unlabeled graph G(ξ) as follows: Consider
a countable vertex set where vertex i is labeled by αi . G(ξ) is obtained by having βij many
edges between the vertices labeled αi and αj , deleting the isolated vertices and finally erasing
the labels of the vertices.

The limits of sampling convergence will be related to a Gf valued stochastic process
obtained from specific random adjacency measures in a way we make more precise below.
To define the random adjacency measures under consideration, we first define a multigraphex.
We denote the sequence space 1 = {(xi)i≥1 : xi ∈ R+ ∀i,

∑∞
i=1 xi < ∞}.

DEFINITION 4 (Multigraphex). A multigraphex is a triple W = (W,S, I ) such that I ∈
1, S : R+ �→ 1 is a measurable function, and W : R2+ ×N0 �→ R+ is a measurable function
satisfying W(x,y, k) = W(y,x, k),

∑∞
k=0 W(x,y, k) = 1, for any x, y ∈ R+ and k ∈ N0.

We will assume throughout that min{∑k≥1 S(·, k),1} is integrable. Further, setting μW(·) =∫
(1 − W(·, y,0))dy, we assume that:

(a) �({x : μW(x) = ∞}) = 0 and �({x : μW(x) > 1}) < ∞,
(b)
∫
(1 − W(x,y,0))1{μW(x) ≤ 1}1{μW(y) ≤ 1}dy dx < ∞,

(c)
∫
(1 − W(x,x,0))dx < ∞.

W is called a multigraphon, S is called a multistar function and I is called an isolated edge
sequence. A graphon W is a multigraphon with W(x,y, k) = 0 for k ≥ 2. In this case, we
describe the graphon as a function W :R2+ → [0,1] and set W(x,y) = W(x,y,1). Similarly,
a simple star function S : R+ �→ 1 satisfies S(x, k) = 0 for k ≥ 2 and all x ∈ R+. In this
case, we describe the star function as S :R+ �→R+, and set S(x) = S(x,1). Finally, a simple
isolated edge constant I corresponds to the case where I (k) = 0 for k ≥ 2. In this case,
we represent I = I (1) as a constant. A graphex is obtained by replacing the multigraphon,
multi-star function and multiedge sequence in Definition 4 by their simple analogues, with
the isolated edge constant sometimes referred to as the dust component of the graphex [11,
28].

In this paper, the case where W is a multigraphon, but I and S are simple plays an impor-
tant role; henceforth, whenever we specify a star function S : R+ �→ R+ or an isolated edge
constant I , we assume that these describe a star function or an edge sequence with S(x, k) or
I (k) = 0 for k ≥ 2 without explicitly mentioning it in every case.

DEFINITION 5 (Adjacency measure of a multigraphex). Given any multigraphex W =
(W,S, I ), define ξW , the random adjacency measure generated by W as follows:

ξW = ∑
i �=j

ζij δ(θi ,θj ) +∑
i

ζiiδ(θi ,θi ) +∑
j,k

g(θj ,χjk)(δ(θj ,σjk) + δ(σjk,θj ))

+∑
k

h
(
η′′

k

)
(δ(ηk,η

′
k)

+ δ(η′
k,ηk)

),

ζij = r if
r−1∑
l=0

W(vi, vj , l) ≤ U{i,j} ≤
r∑

l=0

W(vi, vj , l),(1.2)

g(θj ,χjk) = r if
r−1∑
l=0

S(vj , l) ≤ χjk ≤
r∑

l=0

S(vj , l),
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h
(
η′′

k

)= r if
r−1∑
l=0

I (l) ≤ η′′
k ≤

r∑
l=0

I (l),

where (U{i,j})i,j≥1 is a collection of independent uniform[0,1] random variables, {(θj ,

vj )}j≥1, {(χjk, σjk)}k≥1 for all j ≥ 1 are unit rate Poisson point processes on R
2+, and

(ηk, η
′
k, η

′′
k )k≥1 is a unit rate Poisson point processes on R

3+, where all the above Poisson
point processes are independent of each other and (U{i,j})i,j≥1.

REMARK 1. It is not too hard to check that the measure ξW introduced above is a.s. lo-
cally finite and defines an exchangeable random adjacency measure. This raises the question
whether every exchangeable random adjacency measure necessarily corresponds to some
(possibly random) multigraphex. For graphexes, this result was established in [42], Theo-
rem 4.7. Their proof crucially uses a local finiteness criterion from Kallenberg [31], Propo-
sition 9.25, which however turns out to not be quite correct. Indeed, the conditions for local
finiteness in this proposition need to be supplemented by an extra condition, which was im-
plicitly assumed by Kallenberg in his proof (as well as in the proof of [42], Theorem 4.7).
We discuss this issue in [15], where we state and prove the corrected proposition, and then
apply it to prove the analogue of [42], Theorem 4.7, for multigraphexes, stating that for any
exchangeable random adjacency measure ξ , there exists a random multigraphex W such that

ξ
d= ξW .

The adjacency measure ξW associated with the multigraphex W = (W,S, I ) naturally
defines a Gf valued stochastic process, as we define next. For a point process ξ , let us denote
by ξ |A the measure ξ restricted to A.

DEFINITION 6 (Multigraphex process). For any given multigraphex W , we define the
multigraphex process generated by W as the Gf -valued stochastic process (GPt (W))t≥0
where GPt (W) = G(ξW |[0,t]2).

REMARK 2. There is an equivalent, albeit operationally slightly simpler description of
the distribution of GPt (W). Indeed, it can be obtained by considering a single Poisson process
{vj }j≥1 of rate t on R+, and then adding edges according to the following procedure:

� for i �= j , connect vi and vj with nij edges, where P(nij = r) = W(vi, vj , r);
� for each j , add nj self-loops to vj , where P(nj = r) = W(vj , vj , r);
� for each j add a multistar to vj by adding edges of multiplicity r at a rate tS(vj , r);
� add isolated edges of multiplicity r with rate t2I (r).

Discard all isolated vertices (as well as all labels), and output the resulting unlabeled graph.

Finally, we define sampling convergence of a sequence of multigraphs to a multigraphex.

DEFINITION 7 (Convergence to multigraphex). A sequence (Gn)n≥1 of (multi)graphs is
said to converge to a (multi)graphex W if for all t > 0, (Smpl(Gn, t/

√
2e(Gn)))n≥1 con-

verges to GPt (W) in distribution.

Of course, it is not clear whether sampling convergence in the sense of Definition 2 implies
convergence to a multigraphex. To address this question, we first introduce an equivalent
characterization of sampling convergence for multigraphs.
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DEFINITION 8 (Random labeling). A labeling of a multigraph G into [0, s], denoted by
Lbls(G), is a point process generated as follows: For a collection (Uv)v∈V(G) of independent
and identically distributed uniform[0, s], associate weight Uv to vertex v. Then Lbls(G) :=∑

v,w∈V(G) nvwδ(Uv,Uw), where nvw denotes the number of edges between vertices v and w.
The canonical labeling of G, denoted by Lbl(G), refers to the case s = √

2e(G).

PROPOSITION 1.1. Consider a sequence of multigraphs (Gn)n≥1 with e(Gn) < ∞ for
all n ≥ 1 and limn→∞ e(Gn) = ∞. Then the following are equivalent:

(i) (Gn)n≥1 is sampling convergent.
(ii) (Lbl(Gn))n≥1 converges in distribution as random variables in N (R2+).

Moreover, if the distributional limits of (Smpl(Gn, r/
√

2e(Gn)))n≥1 and (Lbl(Gn))n≥1 are

given by Hr and ξ , then Lblr (Hr)
d= ξ |[0,r)2 . Further, ξ is extremal. Therefore, there exists a

multigraphex W (nonrandom) such that ξ
d= ξW , and (Gn)n≥1 is sampling convergent to W .

The above proposition says that the limit of any sampling convergent sequence of graphs
must be a multigraphex. For simple graphs, an analogue of Proposition 1.1 was proved in [12],
Section 3, relying in turn on [42], Theorem 4.7. Modulo the issues mentioned in Remark 1,
the proof in the multigraph setting is very similar. We provide an outline in Appendix A.

1.4. Limits of random graphs.

Configuration model. The configuration model is the canonical model for generating a ran-
dom multigraph with a prescribed degree sequence. This model was introduced by Bollobás
[5] to choose a uniform simple d-regular graph on n vertices, when dn is even. The idea
was later generalized for general degree sequences d by Molloy and Reed [38] and oth-
ers (see [24]). Consider a sequence d = (d1, d2, . . . , dn) such that n =∑i∈[n] di is even,
where [n] = {1, . . . , n}. Equip vertex j with dj stubs or half-edges. Two half-edges create
an edge once they are paired. Therefore, initially there are n =∑i∈[n] di half-edges. Pick
any one half-edge and pair it with a uniformly chosen half-edge from the remaining un-
paired half-edges. Keep repeating the above procedure until all the unpaired half-edges are
exhausted. The random graph constructed in this way is called the configuration model, and
will henceforth be denoted by CMn(d). Note that the graph constructed by the above proce-
dure may contain self-loops and multiple edges. We define erased configuration model to be
the graph obtained by collapsing all the multiple edges to single edges. We denote this graph
by ECMn(d). This is slightly different compared to the erased configuration model in [24]
since instead of deleting the loops, we merge multiple loops into single loops.

We will want to study the sampling limit of a sequence of configuration models, given in
terms of a sequence of sequences of (dn)n≥1, but for notational convenience, we suppress the
index n of the sequence dn, and just speak of the limit of a sequence CMn(d) random graphs.
Since isolated vertices are removed in the process of sampling, we will assume without loss
of generality that di > 0 for all i. The following quantities determine this limit:

ρn := 1√
n

∑
i∈[n]

δ di√
n

, bn =
∫ ∞

0
(x ∧ 1)ρn(dx),

with ρn considered as a measure on (0,∞). Throughout this discussion, we will assume
that max1≤i≤n di = o(n). Note that the assumption di > 0 trivially implies that n ≥ n. This
restriction is purely technical, and might possibly be relaxed. We do not pursue this in this
paper.
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Next, we introduce the limiting graphex for a sequence of configuration models. Given
any measure ρ on (0,∞) satisfying

∫∞
0 (x ∧ 1)dρ(x) < ∞, we use ρ̄ to denote the tail Lévy

intensity

ρ̄(x) =
∫ ∞
x

ρ(dy).

Defining ρ̄−1 as its inverse, ρ̄−1(y) := inf{x ∈ R+ : ρ̄(x) ≤ y} we note that ρ̄−1 is a càdlàg
function from (0,∞) to R+. It will be convenient to extend ρ̄−1 to a function defined on
R+ by setting ρ̄−1(0) = 0. Finally, let p(k;λ) be the probability that a Poisson λ random
variable takes the value k, p(k;λ) = e−λλk/k!. For any a ∈ R+ and any measure ρ on (0,∞)

satisfying
∫∞

0 (x ∧ 1)dρ(x) < ∞, we define

(1.3)

WCM(x, y, k) =
{
p
(
k; ρ̄−1(x)ρ̄−1(y)

)
, x �= y,

p
(
k; ρ̄−1(x)2/2

)
, x = y,

SCM(x) = aρ̄−1(x), ICM = a2

2
.

It is easy to see, by direct computation, that the graphex WCM = (WCM, SCM, ICM) satisfies
the integrability criteria in Definition 4, and thus the associated random adjacency measure is
locally finite. The multigraphex defined by (1.3) is closely related to the directed multigraph
in Caron and Fox (2017); see [19], (12).

The following result derives necessary and sufficient conditions for the sampling conver-
gence of CMn(d) random graphs, and characterizes the limiting objects. To state our theorem,
we introduce two random objects defined in terms the sequence d = (d1, . . . , dn) and the as-
sociated càdlàg function ρ̄−1

n : a càdlàg process (Yn(t))t≥0 with

Yn(t) = 1√
n

∑
i∈[n]

di1{Ui ≤ t},

where (Ui)i∈[n] is an i.i.d. sequence of random variables Ui ∼ uniform[0,
√

n], and a com-
pletely random measure

μn =∑
i≥1

ρ̄−1
n (vi)δθi

,(1.4)

where {(vi, θi)}i≥1 is a unit rate Poisson point process on R
2+.

We write PCM to denote the product measure
⊗

n≥1 Pn. The probability measure PECM is
defined analogously.

THEOREM 1.2. The following are equivalent:

(i) CMn(d) is sampling convergent a.s. PCM.
(ii) There exists a random measure μ such that L(μn) converges to L(μ) in P(M(R+)).

(iii) There exists b and ρ such that bn → b and ρn → ρ vaguely.
(iv) (Yn(t))t≥0 converges in distribution in D(R+,R+).

Moreover, if (iii) holds, then
∫∞

0 (x ∧ 1)ρ(dx) ≤ b ≤ 1, and μ is of the form (1.1) with
a = b − ∫ (x ∧ 1)ρ(dx). In this case, (Yn(t))t≥0 converges in distribution to (Y (t))t≥0,
where Y(t) = μ([0, t]), and CMn(d) is sampling convergent to the multigraphex WCM =
(WCM, SCM, ICM), almost surely PCM, where WCM is defined in (1.3).

REMARK 3. The graphon limit of dense configuration models was derived in [41]. It
is easy to see that Theorem 1.2 recovers the dense graph limit in case n = �(n2). Ráth
and Szakács [41] establish left convergence by explicitly computing the expected subgraph
densities. In the sparse regime, this proof technique is no longer applicable.



GRAPHEX LIMITS OF RANDOM GRAPHS 2837

REMARK 4. When proving the equivalence of (ii) and (iii), we will at the same time
prove that under the condition (iii) from the above theorem,

(1.5) a = lim
ε→0

lim inf
n→∞

∫ ε

0
xρn(dx) = lim

ε→0
lim sup
n→∞

∫ ε

0
xρn(dx)

(in fact, we will show that the condition bn → b in (iii) could be equivalently be replaced by
the condition that the second equality in (1.5) holds). Since

∫ ε
0 xρn(dx) = 1

n

∑
i di1di≤ε

√
n

,
the constant a therefore represents the limiting fraction of half-edges with degrees di =
o(

√
n), and the condition bn → b is the condition that this limiting fraction exists.

REMARK 5. Let ξCM be the random adjacency measure associated to the multigraphex
WCM, and let ξ∗

CM := ξCM|(x,y):y≤x . Then ξCM has the following “rank-one” structure:
For any disjoint set A,B ∈ B(R+) of finite measure, the distribution of ξ∗

CM(A × A) is
Poisson(μ(A)2/2) and that of ξCM(A × B) is Poisson(μ(A)μ(B)). See Appendix C for the
precise statement and proof.

We obtain the following corollaries from Theorem 1.2. Define the graphon WECM by

WECM(x, y) =
⎧⎨
⎩1 − e−ρ̄−1(x)ρ̄−1(y), x �= y,

1 − e−ρ̄−1(x)2/2, x = y,

as well as a rescaled graphex Wc
ECM := (WECM(

√
c·,√c·), 1√

c
SCM(

√
c·), 1

c
ICM). Recall from

[12] that any sequence of simple graphs with #loops = O(
√

#edges) has a convergent subse-
quence. The following corollary characterizes possible limit points for ECMn(d) under mild
regularity conditions on the degree distribution.

COROLLARY 1.3. Suppose that ρn → ρ vaguely, bn → b ∈R+. Further, assume that∫ ∞
0

∫ ∞
0

(
1 − e−xy)ρn(dx)ρn(dy) → c as n → ∞(1.6)

for some 0 < c < ∞. Then, as n → ∞, ECMn(d) is sampling convergent to the graphex
Wc

ECM a.s. PECM. Moreover, if the left-hand side of (1.6) is bounded away from zero, then the
limit of any a.s. PECM convergent subsequence of ECMn(d) is of the form WC

ECM, for some
constant C > 0.

As a further consequence of Theorem 1.2, we study when the limit is a pure graphon or
purely isolated edges. To this end, we define the uniform tail regularity for a sequence of
multigraphs.

DEFINITION 9. For a vertex G, let dv(G) denote the degree of vertex v. A sequence of
(multi)graphs (Gn)n≥1 is uniformly tail regular if for any ε > 0, there exists δ > 0 such that
for all n ≥ 1,

1

e(Gn)

∑
v:dv≤δ

√
e(Gn)

dv(Gn) < ε.

Note that Definition 9 is equivalent to [10], Definition 13, for simple graphs (see [10],
Remark 14, and [11], Lemma 9.3). Also, recall the definition of stretched cut metric from
[10].
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COROLLARY 1.4. Assume that ρn → ρ, bn → b ∈ R+. Then ICM = 0 if and only if
CMn(d) is uniformly tail regular a.s. PCM. Moreover, if ICM = 0 and (1.6) holds, then
ECMn(d) is uniformly tail regular a.s. PECM. In this case, ECMn(d) converges to Wc

ECM
in the stretched cut metric a.s. PECM.

COROLLARY 1.5. As n → ∞, CMn(d) is sampling convergent a.s. PCM to (0,0, ICM)

if and only if bn → b, ρn → ρ vaguely, with ρ = 0.

Preferential attachment model. We consider a generalization of the preferential attachment
model. This model was first introduced by Pittel [40], and the graph limit in the dense counter
part of this model was studied in [8, 41]. Let κ = (κi)i∈[n] be a sequence of nonnegative real
numbers, and let n,κ =∑i∈[n] κi . Initially, PAn(κ,0) is an empty graph on vertex set [n].
Let di(l) denote the degree of vertex i in PAn(κ, l). Given the graph PAn(κ, l) at time l,
PAn(κ, l + 1) is created by adding one edge to the graph with the end points being chosen
with probability proportional to di(l) + κi . More precisely, the edge (i, j) is added at step l

with probability ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(di(l) + κi)(dj (l) + κi)

(n,κ + 2l)2 for i �= j,

(di(l) + κi)
2

(n,κ + 2l)2 for i = j.

The above process iterates mn times to yield PAn(κ,mn). Throughout, we will assume that
maxi κi = o(n,κ) and min{n,κ ,mn} = ω(logn).

When (κi)i∈[n] are integers, the above process can simply be described by an urn scheme
where we start with an urn with κi balls of color i, for i ∈ [n]. At step l, we select two balls
with replacement from the urn. If the colors of the chosen balls are i and j , we add an edge
between vertices i and j . We also add one additional copy of the balls in the urn with color i

and j before the next iteration.

REMARK 6. The model in [8, 41] is slightly different in the sense that the lth edge is
formed by first drawing the (2l − 1)th ball from the urn, replacing that ball in the urn and
then drawing the 2lth, instead of drawing two balls together at step l. However, this does not
change the limiting result for the preferential attachment model.

The next theorem states that the limit for preferential attachment model. As we will see, as
long as mn = o(2

n,κ), the model behaves very much like a configuration model with degree
sequence (d̄i)i∈[n] where d̄i is the expected degree of i at time mn,

d̄i = E
[
di(mn)

]= 2mn

n,κ

κi .

To formalize this, we set

ρn,κ := 1√
2mn

∑
i∈[n]

δ d̄i√
2mn

, bn,κ =
∫ ∞

0
(x ∧ 1)ρn,κ(dx),

define μn,κ in terms of ρ̄−1
n,κ instead of ρ̄−1

n similarly as in (1.4), and define

Yn,κ(t) = 1√
2mn

∑
i∈[n]

d̄i1{Ui ≤ t} =
√

2mn

n,κ

∑
i∈[n]

κi1{Ui ≤ t},

where (Ui)i∈[n] is an i.i.d. sequence of uniform random variables in [0,
√

2mn]. We will use
sequences (κn)n≥1 and define the measure PPAM analogous to PCM.
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THEOREM 1.6. Assume that mn = o(2
n,κ). Then PAn(κ,mn), μn,κ , bn,κ , ρn,κ , and

(Yn,κ(t))t≥0 satisfies the the class of equivalent statements (i)–(iv) in Theorem 1.2 a.s. PPAM.
Moreover, if ρn,κ → ρ and a = limn→∞

∫
(x ∧1)ρn,κ(dx)− ∫ (x ∧1)ρ(dx), then PAn(κ,mn)

is PPAM almost surely sampling convergent to the graphex WCM is defined in (1.3).

REMARK 7. Consider the case where (κi)i∈[n] is a collection of positive integers with
n,κ being even. Then, if n,κ/2mn → 1, the sampling limits of PAn(κ,mn) and CMn(κ) are
identical. Further, if κi = 1 for all i ∈ [n], then ρ is the zero measure and b = 1, corresponding
to the limiting graphex WCM = (0,0,1/2) and a sampling limit consisting of just isolated
edges.

REMARK 8. Borgs et al. [8] and Ráth and Szakács [41] derived the graphon limit for this
model in the setting mn = �(2

n,κ), and κi = κ for all i ∈ [n], where κ is a universal constant
independent of n. A comparison between their results and Theorem 1.6 shows that the lim-
iting graphons are very different. In particular, a naive extrapolation based on Theorem 1.6
turns out to be incorrect. Intuitively, this discrepancy is explained by nontrivial fluctuations of
the vertex degrees around their expectations. As a result, the measure ρn,κ introduced above,
does not adequately capture the degree characteristics in the dense setting. As a consequence,
this establishes that our assumption mn = o(2

n,κ) in Theorem 1.6 is, in fact, optimal.

Generalized random graph. Given a weight sequence (wi)i∈[n], the generalized random
graph model, denoted by GRGn(w), is obtained by connecting vertices i and j independently
with probability

(1.7) pij = wiwj

Ln + wiwj

,

where Ln =∑i∈[n] wi . Throughout, we will assume Ln = ω(logn). This model has been of
considerable theoretical interest since, conditionally on the degree sequence d , this gives a
uniformly chosen simple graph with degree sequence d [18, 24]. This is also related to the
β-model, studied in [20]. The generalized random graph model falls into the larger class of
inhomogeneous random graphs, studied in the seminal work of Bollobás et al. [6], where the
phase transition in the connectivity structure was characterized for the finite average degree
regime.

ASSUMPTION 1.

(i) ρn,w = 1√
Ln

∑
i∈[n] δ wi√

Ln

converges vaguely to some measure ρw .

(ii) limε→0 lim supn→∞
∫ ε

0 xρn,w(dx) = limε→0 lim infn→∞
∫ ε

0 xρn,w(dx) = a for some
constant a.

(iii) lim infn→∞
∫∞

0
∫∞

0
xy

1+xy
ρn(dx)ρn(dy) > 0.

Define the graphex WC
GRG = (WC

GRG, SC
GRG, IC

GRG), given by

WC
GRG(x, y) =

⎧⎪⎨
⎪⎩

ρ̄−1
w (

√
Cx)ρ̄−1

w (
√

Cy)

1 + ρ̄−1
w (

√
Cx)ρ̄−1

w (
√

Cy)
if x �= y,

0 o.w.,

SC
GRG(x) = a√

C
ρ̄−1

w (
√

Cx), IC
GRG = a2

2C
.

We will use sequences (wn)n≥1 and suppress the dependence on n for notational convenience.
Further, we use PGRG to denote the joint distribution of sequences of GRGn(w) random
graphs, where the graphs are sampled independently for each n.
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THEOREM 1.7. Suppose that GRGn(w) satisfies Assumption 1, and

(1.8) lim
n→∞

∫ ∞
0

∫ ∞
0

xy

1 + xy
ρn(dx)ρn(dy) = c > 0.

Then, as n → ∞, GRGn(w) is sampling convergent to Wc
GRG a.s. PGRG.

COROLLARY 1.8. If GRGn(w) satisfies Assumption 1, then the limit of any a.s. PGRG
convergent subsequence of GRGn(w) is of the form WC

GRG, for some constant C > 0.

COROLLARY 1.9. For a = 0, GRGn(w) converges to Wc
GRG in the stretched cut metric

a.s. PGRG.

Bipartite configuration model. In this section, we describe the sampling limit of bipartite
configuration models. Let us introduce the model first. Consider two sets of vertices V1 and
V2 with associated degree sequences d = (dij )i∈Vj ,j=1,2 such that

∑
i∈V1

di1 =∑i∈V2
di2 :=

n/2. Equip the ith vertex in Vj with dij half-edges. A bipartite configuration model is gen-
erated by sequentially selecting unpaired half-edges one-by-one from V1, and pairing it with
a uniformly chosen unpaired half-edge from V2. Replacing the paired half-edges by edges,
one gets a bipartite random graph, which we denote by BipCMn(d). The probability measure
PBCM is defined analogous to PCM.

Given a degree sequence d , the following quantities determine the limit of BipCMn(d):
For j = 1,2, define

ρnj := 1√
n

∑
i∈Vj

δ di√
n

, bnj :=
∫ ∞

0
(x ∧ 1)ρnj (dx).

Throughout, we will assume that max1≤i≤n,j=1,2 dij = o(n). We do not try to relax this
restriction here.

Next, we introduce the limiting graphex for BipCMn(d). In this case, we consider the
feature space � = R+ × {0,1}. We equip {0,1} with the counting measure, and the feature
space � naturally inherits the product measure on the two component spaces. For measures
ρj on R+ satisfying

∫∞
0 (x ∧ 1)dρj (x) < ∞, we define

WBCM

((
x

c1

)
,

(
y

c2

)
, k

)
=
{
p
(
k; ρ̄−1

1 (x)ρ̄−1
2 (y)

)
, c1 �= c2,

0, c1 = c2,

SBCM

((
x

c

))
=
{
a2ρ̄

−1
1 (x), c = 0,

a1ρ̄
−1
2 (x), c = 1,

IBCM = a1a2.

(1.9)

The extra coordinate {0,1} in the feature space encodes the partition of a sampled vertex. Two
vertices in the same partition cannot share an edge, and thus the graphon is zero whenever
c1 = c2. Note that the graphex in (1.9) is closely related to the bipartite graph model in [19],
Section 3.4.

The following result derives necessary and sufficient conditions for the sampling conver-
gence of BipCMn(d) random graphs, and characterizes the limiting objects. We note that
while the proof of this result is related to that of Theorem 1.2 and the associated corollaries,
these results help provide further intuition into sampling convergence, and provide interesting
examples of possible limits that may be obtained under this notion of convergence.

THEOREM 1.10. The following are equivalent:

(i) BipCMn(d) is sampling convergent a.s. PBCM.
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(ii) For j = 1,2, there exists bj and ρj such that bnj → bj and ρnj → ρj vaguely.

If (ii) holds, then
∫∞

0 (x ∧ 1)ρj (dx) ≤ bj and BipCMn(d) is sampling convergent to the
multigraphex WBCM, almost surely PBCM, with aj = bj − ∫ (x ∧ 1)ρj (dx).

We observe here that the bipartite structure allows for interesting sampling limits as de-
scribed below. A comparison between Theorem 1.2 and Theorem 1.10 shows that in the
nonbipartite model, SCM �= 0 implies that both WCM �= 0 and ICM �= 0, while this is not nec-
essarily true in the bipartite case.

REMARK 9. In the special case ρ2 = 0, ρ1 �= 0, a1 = 0 and a2 �= 0, the corresponding
limit WBCM = (0, SBCM,0). This further illustrates that a configuration model type construc-
tion might also yield graphexes with pure star part.

REMARK 10. For degree sequences with ρ1 = 0, ρ2 �= 0, a1, a2 �= 0, we have a sampling
limit with WBCM = 0 while SBCM �= 0 and IBCM �= 0. Finally, if a1 = 0, a2 �= 0 and ρ1, ρ2 �=
0, the limiting graphex is of the form WBCM = (WBCM, SBCM,0).

1.5. Discussion.

Background. Diaconis and Janson [23], and Austin [2] identified a beautiful connection be-
tween the theory of graph limits, and convergence of exchangeable random arrays. For dense
graphs, the notion of Left convergence is characterized by the convergence of all subgraph
densities. Equivalently, one may permute the vertex labels of a graph Gn uniformly at ran-
dom, and study the properties of the resulting permuted adjacency matrix. In the limit, these
permuted matrices converge weakly to infinite exchangeable random arrays, and their laws
are characterized by the celebrated Aldous–Hoover theorem [1, 26]. Further, the limiting law
of the array has a one-to-one correspondence with the limiting graphon for the dense graph
sequence. However, in contrast, for sparse graph sequences, these matrices converge to the
zero array, and this framework fails to provide nontrivial information about the graph se-
quence. Identifying the exchangeable structures that characterize the limits for sparse graphs
remained an open question for a decade.

Caron and Fox [19] introduced a family of random graph models based on a completely
random measure, and introduced a notion of exchangeability for dynamically growing ran-
dom graphs, via the exchangeability of their adjacency measure on R

2+. Extending this idea,
and using the Kallenberg representation theorem [30, 31] for exchangeable point processes
on R

2+ as a conceptual cornerstone, [42, 43] (see also [28] for a review and some extensions
of the results of [43]) introduced a very general class of exchangeable random graph models.
They further examine structural properties of these graphs, and address questions related to
statistical inference under these generative models. In parallel, [10] generalizes graph limit
theory by introducing the notion of convergence in stretched cut metric for a sequence of
sparse graphs. Finally, [12] formalized the relation between convergence of sparse graphs,
and the convergence of corresponding limiting adjacency measure by introducing the notion
of sampling convergence, a generalization of Left convergence for sparse graph sequences,
and established that the limiting adjacency measure correspond exactly to graphex processes
in [42, 43]. Further, they establish that under the assumption of uniform tail regularity sam-
pling convergence is equivalent to convergence under the stretched cut metric from [10].

In this paper, we utilize these recent advances to study structural properties of random
graphs, while simultaneously establishing the usefulness of this nascent theory.
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REMARK 11. In a recent paper, Borgs et al. [11] proposed and studied the weak kernel
metric on graphexes. This metric generalizes the cut metric for graphons and metrizes sam-
pling convergence without additional regularity conditions. Further, two graphexes at zero
distance in this metric lead to identically distributed graphex processes, and graphexes are
equivalent in this sense if and only if they can be related by measure preserving transforma-
tions. It would be interesting to provide an analogous metric for multigraphexes, but this is
beyond the scope of this paper, and also somewhat orthogonal to our purpose here.

Insights on the graph structure. Recall the definition of a multigraphex (Definition 4). We
take this opportunity to provide further intuition for the components of a multigraphex, and
what they imply for the multigraph sequence converging to this multigraphex. A sequence
(Gn)n≥1 of multigraphs with mn = e(Gn) = o(n2), is composed of three main parts:

(1) A dense core where the vertices have degree �(
√

mn). If the dense part contributes a
positive proportion of edges (i.e., there are �(

√
mn) many vertices of degree �(

√
mn)) then

this part gives rise to the graphon, and thus gives the leading contribution to the subgraph
densities for subgraphs that are more complex than isolated edges or stars.

(2) A sparse part where the vertices have degree o(
√

mn). For the purpose of this dis-
cussion, assume that the edges out of these vertices are simple. Then the probability that
after sampling, the degree of fixed vertex i is two or larger can be upper bounded by p3d2

i ,
where di is the degree of the vertex i before sampling; as a consequence, the expected num-
ber of low degree vertices which after sampling have degree at least two is bounded by∑

i p
3d2

i = o(
√

mn)
∑

i p
3di = o(

√
mn)p

3mn = o(1). This shows that after sampling the low
degree vertices will either have degree one or become isolated. Therefore, edges within the
sparse part will appear as isolated edges in Smpl(Gn, t/

√
2mn), contributing to the isolated

edge constant I .
(3) Connections between dense and sparse part. Since the surviving vertices in the sparse

part have degree one after sampling, these edges contribute to the edge and star densities and
thus they appear as stars or isolated edges in Smpl(Gn, t/

√
2mn).

Note that the vertices of degree �(
√

mn) do not contribute anything to the graphex limit due
to the fact that the probability of such a vertex being observed in the sampling is o(1). (Note
that in general, when the edges out of the low degree vertices have nontrivial multiplicities,
we could also get isolated multiedges as well as stars with edges that have multiplicity bigger
than one).

A visualization of Smpl(Gn, t/
√

2mn) is given by Figure 1. The asymptotic structure of
Smpl(Gn, t/

√
2mn) constitutes a network between the dense part described by W , stars cen-

tered at the high degree vertices described by S representing the edges between the dense and
sparse parts, and isolated edges described by I arising from the sparse part.

Heuristic derivation of sampling limit for the configuration model. We start by noting that
p-sampling with p = t/

√
2e(G) is asymptotically equivalent to what one might want to call

Poisson sampling, defined by first choosing k according to a Poisson random variable with
expectation t |V (G)|/√2e(G), and then choosing k vertices from V (G), uniformly at random
with replacement, which in turn is equivalent to considering a Poisson process of rate p =
t/

√
2e(G) on V (G). In the simple graph setting, this follows from Lemma 5.4 in [12], but an

inspection of the proof shows that the lemma holds in the multigraph setting considered here
as well. We also note that for the configuration model, 2e(Gn) = n(1+o(1)); see Lemma 2.1
below for the precise statement. Finally, we couple the Poisson process on V (G) to a Poisson
process as the one in Remark 2, that is, a Poisson process (xi) of rate t on R+ by assigning
adjacent intervals of width 1/

√
n to each vertex. The degree of the vertex v corresponding
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FIG. 1. Typical structure of Smpl(CMn(d), t/
√

n).

to xi can then easily be seen to be equal to dv = ρ̄−1
n (xi)

√
n. Note also that ρ̄−1

n (xi)
√

n = 0
if xi does not correspond to any vertex v ∈ [n], that is, if xi /∈ [0, n/

√
n].

Linking back to the above insights on the graph structure of the sampled graph, we next
note that

∫
xρn(dx) = 1

n

∑
i di = 1 and that∫

xρ(dx) ≤ lim inf
n→∞

∫
xρn(dx) = 1

by Fatou’s lemma. We therefore interpret
∫

xρ(dx) as the limiting fraction of (half)-edges
whose endpoints have degrees of order �(

√
n). Edges between vertices in this part there-

fore contributed to the graphon part of the limiting graphex. To “derive” the concrete form of
this liming graphon, we need one more fact, established in Proposition 2.2 below. It states
that in the configuration model CMn(d), the number of edges created between two dis-
joint sets of half-edges S and S′ of size O(

√
n) is approximately distributed according to

Poisson(|S||S′|/n), and the number of edges connecting such a set S to itself is approxi-
mately distributed according to Poisson(|S|2/2n). Applied two Poisson points xi, xj such
that the degrees of the corresponding vertices v, v′ are of order

√
n, we then expect to see

Poisson(dvdv′/n) = Poisson(ρ̄−1
n (xi)ρ̄

−1
n (xj )) many edges between i and j , and a loop of

multiplicity Poisson(d2
v /2n) = Poisson((ρ̄−1

n (xi))
2) at the vertex i, explaining the form of

the limiting graphon.
Next, observing that

∫∞
M ρ(dx) ≤ 1

M
and

∫∞
M ρn(dx) ≤ 1

M
by Markov’s inequality, we see

that the high degree vertices don’t contribute to bn or b, showing that a = limn→∞ bn − b

is the liming fraction of half-edges belonging to low degree vertices. Considering the set of
half-edges SL attached to some low degree vertex, let S

p
L be the set of half-edges surviving

after sampling. Then SL contains approximately an many half-edges, showing that |Sp
L|

is approximately equal to pan = ta
√

n. The number of full edges formed between these
is then approximately equal to Poisson((ta

√
n)

2/2n) = Poisson((ta)2/2), motivating the
appearance of the term a2/2 in (1.3).

Finally, to derive the form of the star intensity S in (1.3), we consider the edges be-
tween the high and low degree vertices. A vertex v corresponding to a Poisson point xi such
that dv = ρ̄−1

n (xi)
√

n is of order
√

n then approximately has degree Poisson(dv|Sp
L|/n) ≈

Poisson(taρ̄−1
n (xi)) into S

p
L , explaining the appearance of the term S in (1.3).

To relate the results for the configuration model to those of the erased configuration model
we use that a Poisson random variable with rate w is nonzero with probability 1 − e−w . This
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in turn implies that asymptotically, the number of nonloop edges in the erased configuration
model is by a factor c smaller than the number of nonloop edges in the original configura-
tion model, with c given by (1.6). Since sampling convergence of a sequence Gn involves a
random coin flip with probabilities p = t/

√
2e(Gn), we have to rescale time by a factor

√
c

when translating our results for the configuration model to that of the erased configuration
model. This leads to the graphex Wc

ECM in Corollary 1.3.
The limit for the bipartite configuration model can be motivated using analogous heuris-

tics.

Heuristic derivation of sampling limit for the preferential attachment model. It turns out
that the preferential attachment model behaves very much like a configuration model with
degree sequence equal to the expected degrees at time mn, (d̄i)i∈[n]. The proof details are
different, with Proposition 2.2 replaced by Proposition 3.2 below as well as other differences
in the details, but the essence will again be that we control the dependence of the number of
edges between different sets of vertices and approximate them by suitable Poisson random
variable, eventually giving the same limiting graphex as the configuration model with degree
sequence (d̄i)i∈[n]; see also Remark 12 in Section 3 below.

Heuristic derivation of the sampling limit for the generalized random graph. It will be
convenient to sample vertices with probability p′ = t/

√
Ln rather than with probability

p = 1/
√

2mn where mn is the number of nonloop edges in GRGn(w). It turns out that,
asymptotically, this just corresponds to rescaling of time by a factor

√
c, a fact which follows

from the observation that

1

Ln

E[2mn] = 1

Ln

∑
i,j

wiwj

Ln + wiwj

=
∫ ∞

0

∫ ∞
0

xy

1 + xy
ρn(dx)ρn(dy) = c + o(1)

(plus a concentration argument). This explains the rescaling by
√

c in Wc
GRG, but obviously,

not yet the particular form of the limiting graphex.
To derive the latter, we proceed very similar to our heuristic derivation for the configu-

ration model, except that we now consider a core of vertices defined by the weights of the
vertices. Specifically, we consider a core of vertices with weights wi = �(

√
Ln) and a set

of low-weight vertices with weights wi = o(
√

Ln). It is then again not hard to argue that the
low weight vertices will have degree at most 1 after sampling, and it is also clear that asymp-
totically, the sum of the weights of all low weight vertices is aLn with a as in Assumption 1.

Furthermore, following the steps in our heuristic derivation of the limiting graphex for the
configuration model, replacing the Poisson number of edges Poisson(dvdv′/n) between two
vertices of degree di, dj by Bern(pij ) (with pij given in (1.7)), the reader can now easily
“derive” the form of the limiting graphon for GRGn(w). To obtain the other two parts of the
limiting graphex, we approximate the probability (1.7) for an edge between two low weight
vertices (or a low and high weight vertex) by wiwj/Ln and approximate the sum of indepen-
dent Bernoulli random variables by a Poisson random variable; using these approximations,
the “derivation” of the limiting graphex is now very similar to that for the limiting graphex
for the configuration model.

Relation to Caron–Fox graph process. Corollary 1.4 establishes that the sampling limit of
certain ECMn(d) random graphs is given by the random graph model introduced by Caron
and Fox [19] (see [19], Section 3). Thus our result gives a new perspective on the Caron–Fox
random graph. Indeed, certain Caron–Fox graphs may be looked upon as sampling limits
of suitable ECMn(d) random graphs. [12] characterizes graphex processes as the limits of
sampling convergent graph sequences, and thus conceptually clarifies the innate importance
of these processes. Our result has a similar conceptual interpretation, in that it identifies a
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prominent graphex process, that is, the Caron–Fox process, as the sampling limit of a natural
sequence of random graphs. Put differently, rather than obtaining the model by first postulat-
ing exchangeability of a rather abstract random measure on R

2+, then invoking Kallenberg’s
representation theorem and finally making further simplifications to arrive at the final model,
our results derive the Caron–Fox graph as a subsample of an underlying latent configuration
model. In turn, this further reinforces the importance of the Caron–Fox model, and provides
some practical insights into its suitability as a model in real applications.

Outline. The rest of the paper is structured as follows. We prove Theorem 1.2 and the as-
sociated corollaries in Section 2, Theorem 1.6 in Section 3, Theorem 1.7 in Section 4, and
Theorem 1.10 in Section 5. For completeness, we collect some properties of completely ran-
dom measures in Appendix B. In Appendix C, we compute some functionals of specific ran-
dom adjacency measures arising in the proofs of Theorems 1.2 and 1.7, respectively. Finally,
Appendix D establishes some facts about random adjacency measures under rescaling.

2. Proof for configuration model results. Our proofs rely on one lemma and three
propositions. For any (multi)graph G, let e(G) denote the number of nonloop edges in G.

LEMMA 2.1 (Nonloop edges in CMn(d)). As n → ∞, e(CMn(d))
n

→ 1/2 a.s. PCM. Fur-
ther, as n → ∞, for all ε > 0,

2E[e(ECMn(d))]
n

−
∫ ∞

0

∫ ∞
0

(
1 − e−xy)ρn(dx)ρn(dy) → 0,(2.1)

PECM
(∣∣e(ECMn(d)

)−E
[
e
(
ECMn(d)

)]∣∣> εn

)≤ 2 exp(−C0εn)(2.2)

for some universal constant C0 > 0.

PROPOSITION 2.2. Let En(S, S′) denote the number of edges created between the set
of half-edges S and S′ in the construction of CMn(d). Consider k disjoint subsets of half-
edges (Sj )j∈[k] such that |Sj | = sj = O(

√
n) for all j ∈ [k]. Let En = (En(Si, Sj ))1≤i≤j≤k ,

E := (Eij )1≤i≤j≤k , where E is an independent collection and Eij ∼ Poisson(sisj /n) for
i �= j , Eii ∼ Poisson(s2

i /2n). Then, as n → ∞,

dTV(En,E) → 0,

where dTV(·, ·) denotes the total variation distance. Moreover, if Sj ’s are random disjoint
subsets chosen independently of CMn(d) and satisfying E[sj ] = O(

√
n) for all j ∈ [k], then

limn→∞ dTV(En,E) = 0, where both En and E refer to the joint distribution, including in
particular the randomness stemming from the random sets Sj ’s.

To state the next proposition, we recall the definition of Yn(t) from Theorem 1.2. For
A ∈ B(R+), let Vn(A) be the set of vertices obtained by labeling the vertices in [n] uniformly
from [0,

√
n] and then retaining the vertices with labels in A. This induces a random measure

S̄n on R+ via S̄n(A) = 1√
n

∑
i∈Vn(A) di that is related to Yn(t) via Yn(t) = S̄n([0, t]). As

we will see, the next proposition immediately implies that distributional convergence of the
measure μn defined in Theorem 1.2 is equivalent to the convergence of the finite-dimensional
distributions of (Yn(t))t≥0.

PROPOSITION 2.3. For any disjoint collection of sets (Aj )j∈[k] from B(R+), and α =
(αj )j∈[k] ∈ R

k , define �n(A1, . . . ,Ak) := E[ei
∑

j∈[k] αj S̄n(Aj )]. If maxi δi = o(n), then

�n(A1, . . . ,Ak) = exp
(∑

j∈[k]
�(Aj )

∫ (
eiαj x − 1

)
ρn(dx) + o(1)

)
.
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PROPOSITION 2.4. Let ξn denote the point process Lbl√n
(CMn(d)) on R

2+. For any
A,B ∈ B(R+), l ∈N

∗ and δ > 0,

P
(∣∣P(ξn(A × B) = l|CMn(d)

)− P
(
ξn(A × B) = l

)∣∣> δ
)

≤ 2 exp
(
− δ2n

(12�(A)�(B))2

)
.

(2.3)

Consequently, PCM a.s., dL(L(ξn|CMn(d)),L(ξn)) → 0 as n → ∞, where dL(·, ·) denotes
the Lévy–Prohorov metric on P(M(R2+)).

We first establish Theorem 1.2 and its corollaries given Lemma 2.1, Propositions 2.2, 2.3
and 2.4, and defer the proofs of the lemma and propositions to the end of the section.

Proofs of Theorem 1.2, Corollaries 1.3, 1.4 and 1.5.

PROOF OF THEOREM 1.2. (ii) ⇔ (iii). If {(vi, θi)}i≥1 is a unit rate Poisson point process
on R

2+, then {(ρ̄−1
n (vi), θi)}i≥1 is a Poisson process with intensity measure ρn × λ, show-

ing that μn ∼ CRM(0, ρn × λ). Let Xn(t) = μn([0, t]). Then (Xn(t))t≥0 is a Lévy process
(see Appendix B for the definition and some important properties of Lévy processes) with
characteristic function

E
[
eiθXn(t)]= E

[
eiθμn([0,t])]= exp

(
t

∫ (
eθ ix − 1

)
ρn(dx)

)

= exp
(
t

(
iθbn + t

∫ (
eiθx − 1 − iθ(x ∧ 1)

)
ρn(dx)

))
,

(2.4)

where the third step follows using Lemma B.1. Using the standard terminology for the the-
ory of Lévy processes (see Appendix B) (Xn(t))t≥0 is a Lévy process with characteristics
(bn,0, ρn). By [22], Lemma 11.1.XI, statement (ii) is equivalent to assuming that (Xn(t))t≥0
converges as a stochastic process in D(R+,R+). Therefore, [27], Chapter VII, Corollary 3.6
(restated as Lemma B.2 in Appendix B for the special case of Lévy processes) implies that (ii)
is equivalent to the following two conditions: bn → b and

∫
f dρn → ∫

f dρ for all bounded
continuous functions f : R+ →R vanishing near zero, which by Lemma B.3 is equivalent to
(iii). Note that Lemma B.3 also proves Remark 4.

(ii) ⇔ (iv). By Proposition 2.3 and (2.4), convergence of the finite dimensional distributions
of (Yn(t))t≥0 is equivalent to convergence of the characteristic functions of Xn(t) for all t .
Since Xn(t) is a Lévy process, this in turn is equivalent to the convergence of this process in
law, which is equivalent to (ii).

All that remains to show is therefore tightness of (Yn(t))t≥0 in D(R+,R+). To this end,
we note that for t > u > s,

E
[(

Yn(t) − Yn(u)
)(

Yn(u) − Yn(s)
)]= 1

2
n

∑
i �=j

didj (t − u)(u − s)

≤ 1

4
(t − s)2.

(2.5)

Tightness of (Yn(t))t≥0 follows using [27], Chapter VI, Theorem 4.1.

(i) ⇔ (iv). By Proposition 1.1, statement (i) is equivalent to PCM almost sure convergence of
(Lbl(CMn(d)))n≥1 in distribution. To compare this to PCM almost sure convergence of ξn in
distribution, we will use the fact that by Lemma 2.1, 2e(CMn(d))/n → 1 PCM almost surely.
This in turn implies that PCM almost sure convergence of (Lbl(CMn(d)))n≥1 in distribution
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is equivalent to PCM almost sure convergence of ξn in distribution (the formal argument
requires a technical lemma, Lemma D.1 from Appendix D). Combining these facts with
Proposition 2.4 and the fact that n = �(logn) we concluded that (i) is equivalent to the
statement that L(ξn(Ai ×Aj))1≤i≤j≤k converges for any k ≥ 1 and disjoint sets Ai ∈ B(R+),
i = 1, . . . , k.

Given a collection of labels (Uj )j=1,...,n chosen i.i.d. uniformly at random in [0,
√

n], let
Vn(Ai) be the set of vertices with label in Ai , and let Si be the set of half-edges whose
endpoint is in Vn(Ai). As before, let S̄n(A) = 1√

n

∑
j∈Vn(A) dj . Then |Si | = S̄n(Ai)

√
n

and E[|Si |] = �(Ai)
√

n, so by Proposition 2.2 convergence of L(ξn(Ai × Aj))1≤i≤j≤k is
equivalent to distributional convergence of {Poisson(S̄n(Ai)S̄n(Aj ))}i,j∈[k], which in turn is
equivalent to distributional convergence of {S̄n(Ai)S̄n(Aj )}i,j∈[k]. The latter clearly implies
convergence of the random vector {(S̄n(Ai))

2}i∈[k], and since S̄n(Ai) ≥ 0, this in turn im-
plies convergence of {S̄n(Ai))}i∈[k]. Conversely, the latter clearly implies convergence of
{S̄n(Ai)S̄n(Aj )}i,j∈[k], so we have shown that (i) is equivalent to convergence of the finite
dimensional distributions of (Yn(t))t≥0. To show that this is equivalent to (iv), we use the
tightness condition (2.5).

Finally, to obtain the required descriptions for the limiting objects, note that (ii) im-
plies L(μn) converges weakly. Since μn is completely random, it follows that there exists
a completely random measure μ such that L(μn) → L(μ) in P(N (R+)). Thus, μ admits
a representation (1.1). Moreover, the convergence of the characteristics of the Lévy process
(Xn(t))t≥0 yields that a = limn→∞

∫
(x∧1)ρn(dx)−∫ (x∧1)ρ(dx). Finally, Proposition 2.3,

(2.4) and convergence of the Lévy process (Xn(t))t≥0 to a Lévy process with characteristics
(a,0, ρ) gives that

�n(A1, . . . ,Ak) → exp
(∑

j∈[k]
�(Aj )

(
a +

∫ (
eiαj x − 1

)
ρ(dx)

))
,

for any disjoint collection of sets (Aj )j∈[k] from B(R+). This shows that S̄n converges
to the completely random measure μ, and that (Yn(t))t≥0 converges to the Lévy process
(μ([0, t]))t≥0. Using the convergence of S̄n to μ and following the argument from the
proof of (i) ⇔ (iv) we then get that in distribution, (ξn(Ai × Aj))1≤i≤j≤k converges to
{Poisson(μ(Ai)μ(Aj ))}i,j∈[k]. As established in Lemma C.1, this is equal in distribution to
(ξWCM(Ai × Aj))1≤i≤j≤k , as required. �

PROOF OF COROLLARY 1.3. To establish this corollary, we first note that

0 ≤
∫ ∞

0

∫ ∞
0

(
1 − e−xy)ρn(dx)ρn(dy) ≤ 1,

using 1 − e−x ≤ x for x ≥ 0, and
∫∞

0 xρn(dx) = 1. Thus this sequence is compact, and
equivalently, every sequence has a convergent subsequence. Let us assume∫ ∞

0

∫ ∞
0

(
1 − e−xy)ρn(dx)ρn(dy) → c > 0,

along a subsequence. The proof of Theorem 1.2 implies that Lbl√ln
(ECMn(d)) converges

weakly to the random adjacency measure corresponding to the graphex W1
ECM. The proof is

now complete, once we use Lemma 2.1 and Lemma D.1. �

Next, we prove Corollary 1.4. It is easy to see that in this specific case, the result follows
almost directly from [10], Remark 14. Below, we provide a more detailed proof from first
principles. We feel that this proof is more intuitive, and also more generally applicable, as
evidenced by its easy adaptation to establish Corollary 1.9 in Section 4.
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PROOF OF COROLLARY 1.4. By Theorem 1.2, ICM = 0 if and only if a = 0, which by
Remark 4 is equivalent to

lim
ε→0

lim sup
n→∞

∫ ε

0
xρn(dx) = 0,(2.6)

which by Definition 9 is equivalent to uniform tail regularity of CMn(d).
We now establish that (2.6) implies that the sequence ECMn(d) is uniform tail regular

PECM a.s. To this end, set V>ε = {i : di > ε
√

n}, V≤ε = V c
>ε and denote by E(V>ε) the

number of edges in CMn(d) with both end points in V>ε . We have, by direct computation,

E
[
E(V>ε)

]= 1

2

(
1 + o(1)

)
n

(
1 −
∫ ε

0
xρn(dx)

)2
= n

(
1

2
− Err(ε, n)

)
,

where Err(ε, n) is an error term such that limε→0 lim supn→∞ Err(ε, n) = 0. By Lemma 2.5
below, there exist a constant C0 > 0 such that for all δn > 0,

P
(∣∣E(V>ε) −E

[
E(V>ε)

]∣∣≥ δnn

)≤ 2 exp
(−C0nδ

2
n

)
.

Since n = ω(logn), we can choose δn in such a way that this bound is summable and δn =
o(1). Thus PCM a.s.,

e
(
CMn(d)

)− E(V>ε) ≤ Err(ε, n)n + o(n).(2.7)

Let EECM(ε) denote the number of edges in ECMn(d) with at least one end point in V≤ε .
Since this is bounded by the number of edges in CMn(d) with at least one end point in V≤ε ,
(2.7) implies that PECM a.s., EECM(ε) ≤ n Err(ε, n) + o(n). Now, recall the definitions of
stretched canonical graphon [10], Section 2.3, and uniformly tail regular graphs [10], Defini-
tion 13. Let Wn denote the stretched canonical graphon for ECMn(d). Set ε > 0, and consider
Un to be the set corresponding to the vertices in V>ε . With this choice of Un,

(2.8)
∥∥Wn − Wn1{Un × Un}

∥∥
1 ≤ Err(ε, n) + o(1),

where ‖ · ‖1 denotes the L1 norm. Note here that for constructing the stretched canonical
graphon, the space is scaled with

√
e(ECMn(d)), rather than

√
n, but that does not change

the order in (2.8) due to Lemma 2.1. To derive the required claim, it suffices to show that the
Lebesgue measure of the set corresponding to the vertices in Un is uniformly bounded in n.
Upon direct computation, we note that this measure is exactly ρn((ε,∞)) ≤ 1

ε

∫∞
0 xρn(dx) =

1
ε
. This establishes that ECMn(d) is uniformly tail regular a.s. PECM. Finally, note that con-

vergence in stretched cut metric follows immediately from [12], Theorem 5.5. �

PROOF OF COROLLARY 1.5. The corollary is an immediate consequence of Theo-
rem 1.2. �

Proofs of Propositions 2.3 and 2.4 and Lemma 2.1.

PROOF OF PROPOSITION 2.3. Let li denote the label for vertex i that is uniformly dis-
tributed over the interval [0,

√
n], independently over i ∈ [n]. Note that

�(A1, . . . ,Ak) = ∏
i∈[n]

E
[
e

idi√
n

∑
j∈[k] αj1{li∈Aj }]

= ∏
i∈[n]

(
1 − 1√

n

∑
j∈[k]

�(Aj ) + 1√
n

∑
j∈[k]

�(Aj )e
idiαj√

n

)
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= ∏
i∈[n]

exp
(

1√
n

∑
j∈[k]

�(Aj )
(
e

idiαj√
n − 1

)+ O
(
d2
i /2

n

))

= exp
(∑

j∈[k]
�(Aj )

∫ (
eiαj x − 1

)
ρn(dx) + o(1)

)
,

where in the last step we used that
∑

i d
2
i ≤ maxi di

∑
i di = o(2

n). This completes the proof.
�

In the next two proofs, we will use the following simple switching lemma.

LEMMA 2.5 (Switching lemma). Let P be a perfect matching of the half-edges, and
P ′ be another perfect matching which can be obtained from P by one switch. Let X be a
function on perfect matchings satisfying the Lipchitz condition |X(P ) − X(P ′)| ≤ c. Then,
for any ε > 0,

P
(∣∣X − E[X]∣∣> ε

)≤ 2e
− ε2

nc2 .

PROOF. This follows using identical arguments as [44], Theorem 2.19. Note that [44],
Theorem 2.19, was only stated for random regular graphs, but the same argument works for
the general configuration model as well. �

PROOF OF PROPOSITION 2.4. Recall that an instance of CMn(d) is generated by choos-
ing a uniformly random matching P of the n half-edges corresponding to d . Denoting the
multi-graph corresponding to a matching P by Gn = Gn(P ), we apply Lemma 2.5 with
Xn(P ) = P(ξGn(P = l|Gn). Consider two matchings P and P ′ that differ by at most one
switch, and label the half-edges involved in this switch by 1, . . . ,4 in such a way that in
P , 13 and 24 are matched, and in P ′, 14 and 23 are matched. Then ξGn(A × B) remains
unchanged between P and P ′ unless at least one of the half-edges 1, . . . ,4 has a label in
A, and a second, different one, has a label in B . A union bound then easily shows that
|Xn(P ) − Xn(P

′)| ≤ 12�(A)�(B)/n. This proves (2.3).
The proof of the final statement follows by observing that M(R2+), equipped with vague

topology is a Polish space, and that weak convergence on such spaces is determined by count-
able classes of sets. �

PROOF OF LEMMA 2.1. The expected number of loops in CMn(d) is given by

1

2
E

[∑
i∈[n]

∑
j∈[di ]

1{j th half-edge of the ith vertex creates a loop}
]

= 1

2

∑
i∈[n]

∑
j∈[di ]

di − 1

n − 1
≤ ∑

i∈[n]

d2
i

n

≤ max
i∈[n] di = o(n).

(2.9)

This immediately proves that E[e(CMn(d))]/n → 1/2 as n → ∞. To prove almost sure
convergence, we use Lemma 2.5. Note that if P and P ′ are two perfect matchings differing
by at most one switch, e(CMn(d))/n might change by at most 2/n. This gives the required
concentration.

Next, we compute the expected number of edges in ECMn(d). To this end, we compute
first the expected number of multiple edges. Let Xij denote the number of edges between i

and j . Thus the total number of multiple edges is given by

(2.10)
∑
i<j

(Xij − 1)1{Xij ≥ 2}.
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Now,

E
[
(Xij − 1)1{Xij ≥ 2}]= E

[
Xij1{Xij ≥ 2}]− P(Xij ≥ 2)

= E[Xij ] −E
[
Xij1{Xij ≤ 1}]− P(Xij ≥ 2)

= E[Xij ] − P(Xij ≥ 1)(2.11)

= E[Xij ] − 1 + P(Xij = 0)

= didj

n − 1
− 1 + e− di dj

n + O

(d2
i dj + d2

j di

2
n

)
,

where we have used that

0 ≤ P(Xij = 0) −
di−1∏
t=0

(
1 − dj

n − 1 − 2t

)
≤ d2

i dj

(n − 2di)2 ,

see, for example, [25], (4.9), together with the fact that(
1 − dj

n − 1 − 2t

)
= exp

(
−dj

n

)(
1 + O

(didj + d2
j

2
n

))
.

Therefore, (2.10) and (2.11) together with (2.9) imply that the expected number of edges
in ECMn(d) is

n

2
−∑

i<j

(
didj

n

− 1 + e− di dj
n

)
+ o(n) = 1

2

∑
i �=j

(
1 − e− di dj

n
)+ o(n)

= n

2

∫ ∞
0

∫ ∞
0

(
1 − e−xy)ρn(dx)ρn(dy) + o(n),

where we have again used the fact that maxi∈[n] di = o(n). This proves (2.1).
To prove (2.2), we again use Lemma 2.5, noting that the number of edges in ECMn(d)

becomes fixed once the uniform matching of half-edges has been fixed, and that a switch can
alter this function by at most a bounded constant. This completes the proof. �

2.1. Edge counts for configuration model. PROOF OF PROPOSITION 2.2. We prove
this for k = 2 and the general case follows similarly. Thus, we need to show that

dTV

(
L
(
En(S1, S1),En(S1, S2),En(S2, S2)

)
,Poi

(
s2

1

2n

)
⊗ Poi

(
s1s2

n

)
⊗ Poi

(
s2

2

2n

))
→ 0.

For simplicity, we write S = S1 ∪S2 and s = |S| = s1 + s2. Let us enumerate the half-edges in
S1 arbitrarily by {1, . . . , s1} and the half-edges in S2 by {s1 + 1, . . . , s}. We first pair the half-
edges of S1 and then the remaining unpaired half-edges of S2. Consider sequential pairing of
the half-edges of S and at step α, α = 1, . . . , s, we take the half-edge labeled α and if it is not
already paired to some previous half-edge, we pair it with another unpaired half-edge chosen
uniformly at random. Let Iα denote the three-dimensional Bernoulli random vector where

(2.12) Iα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1,0,0) if α ∈ S1, half-edge α is not paired previously

and it is paired with another half-edge in S1,

(0,1,0) if α ∈ S1, half-edge α is not paired previously

and it is paired with another half-edge in S2,

(0,0,1) if α ∈ S2, half-edge α is not paired previously

and it is paired with another half-edge in S2,

(0,0,0) otherwise.
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Note that
∑s

α=1 Iα = (En(S1, S1),En(S1, S2),En(S2, S2)). We first couple the I ′
αs to indepen-

dent multivariate Bernoulli random variables, and then use Stein’s method to obtain multi-
variate Poisson approximation for (En(S1, S1),En(S1, S2),En(S2, S2)).

Coupling. We approximate the collection (Iα)sα=1 with a collection of independent random
variables (Îα)sα=1. To this end, we describe an algorithm that sequentially pairs the half-
edges and keeps track of a special set of half-edges, called bad half-edges. Let Bα denote the
set of bad half-edges at step α. Initially, all the half-edges are nonbad, that is, B0 = ∅. As
before, the half-edges of S1 take labels in {1, . . . , s1} and the half-edges of S2 take labels in
{s1 + 1, . . . , s}. At stage α, we pair the half-edge labeled α (call it eα) in S to a uniformly
chosen half edge from {e1, . . . , eα}c (call it fα). If eα ∈ Bα−1, we set Bα = Bα−1. If eα ∈ Bc

α−1
and fα ∈ Bc

α−1, we set Bα = Bα−1 ∪ {fα} and gα = fα . Finally, if eα ∈ Bc
α−1 and fα ∈ Bα−1,

we choose gα uniformly at random from Bc
α−1 ∩ {e1, . . . , eα}c independently and set Bα =

Bα−1 ∪ {gα}. Under this scheme, we define

Îα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1,0,0) if eα ∈ S1, fα ∈ S1,

(0,1,0) if eα ∈ S1, fα ∈ S2,

(0,0,1) if eα ∈ S2, fα ∈ S2,

(0,0,0) otherwise,

Iα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1,0,0) if eα ∈ S1 ∩Bc
α−1, gα ∈ S1,

(0,1,0) if eα ∈ S1 ∩Bc
α−1, gα ∈ S2,

(0,0,1) if eα ∈ S2 ∩Bc
α−1, gα ∈ S2,

(0,0,0) otherwise.

(2.13)

Note that (Îα)sα=1 is an independent collection, and for α = 1, . . . , s1, Îα = (1,0,0) with
probability (s1 −α)/(n −α), Îα = (0,1,0) with probability s2/(n −α), and zero otherwise.
Furthermore, for α = s1 + 1, . . . , s, Îα = (0,0,1) with probability (s2 − (α − s1))/(n − α),
and zero otherwise. Moreover, the distribution of (Iα)sα=1 is same as described in (2.12).

Next, we investigate the probability that the two random variables in (2.13) are unequal.
First, if eα, fα ∈ Bc

α−1, then Îα = Iα . Next, at stage α, eα ∈ Bα−1 if it was already paired
previously to a nonbad half-edge. Now, there were at most s previous steps performed and at
each of those steps, the probability of pairing with the half-edge labeled α is at most 1/(n −
s), so that P(eα ∈ Bα−1) ≤ s/(n − s). Moreover, conditional on the fact that eα ∈ Bα−1,
Îα �= Iα if and only if Îα �= (0,0,0) and P(Îα �= (0,0,0)|eα ∈ Bα−1) = P(Îα �= (0,0,0)) ≤
s/(n − s). Thus,

(2.14) P(eα ∈ Bα−1 and Iα �= Îα) ≤ s2/(n − s)2.

On the other hand, if fα ∈ Bα−1 and eα ∈ Bc
α−1 (we call this event Fα), then the event fα ∈ Sc

implies gα ∈ S. Therefore,

P(Fα and Iα �= Îα) ≤ P(Fα, fα ∈ S) + P
(
Fα,fα ∈ Sc, gα ∈ S

)
= (I) + (II).

(2.15)

First, we obtain an upper bound on (II). Noting that P(Fα) ≤ P(fα ∈ Bα−1) ≤ s/(n − s) and
P(gα ∈ S|Fα) ≤ s/(n − s) due to the choice of gα , it follows that

(2.16) (II) ≤ s2/(n − s)2.
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To derive an upper bound on (I), we use the fact that, conditioned on |Bα−1 ∩ S| ≤ 
1/3
n , the

probability that fα ∈ Bα−1 ∩ S is at most 
1/3
n /(n − s). Thus,

(I) ≤ P(fα ∈ Bα−1 ∩ S) ≤ 
1/3
n

n − s
+ P
(|Bα−1 ∩ S| > 1/3

n

)

≤ 
1/3
n

n − s
+ P
(
En(S, S) > 1/3

n

)
,

where the last inequality follows using the fact that an element is added to Bα−1 ∩ S if and
only if either eα, fα ∈ Bc

α−1 ∩ S or eα, gα ∈ Bc
α−1 ∩ S but fα ∈ Bα−1, and in both cases

En(S, S) increases by 1. Now, in the sequential pairing scheme for creating the configuration
model in (2.12), let Fα denote the sigma-algebra with respect to which the pairing obtained
up to time α is measurable. Let Xα = E[En(S, S)|Fα], so that Xs = En(S, S) and X0 =
E[En(S, S)]. Thus (Xα)sα=1 is the Doob-martingale for En(S, S) and |Xα −Xα−1| ≤ 1. Using
Azuma–Hoeffding inequality [29], Theorem 2.25, and the fact that E[En(S, S)] ≤ s2/n =
O(1), it follows that for all sufficiently large n

P
(
En(S, S) > 1/3

n

)≤ P

(
En(S, S) −E

[
En(S, S)

]
>

1

2
1/3
n

)
≤ e−

2/3
n /4s,

and, therefore,

(2.17) (I) ≤ 
1/3
n

n − s
+ e−c

1/6
n

for some constant c > 0.
Combining (2.15), (2.16) and (2.17), we get that for all sufficiently large n,

P(Fα and Iα �= Îα) ≤ 
1/3
n

n − s
+ e−c

1/6
n + s2

(n − s)2 .

With the help of (2.14) this implies that for all sufficiently large n,

P

(
s∑

α=1

Îα �=
s∑

α=1

Iα

)
≤

s∑
α=1

P(Îα �= Iα)

≤ s3

(n − s)2 + s
1/3
n

n − s
+ se−c

1/6
n =: Err1 .

(2.18)

Since s = O(
√

n), Err1 → 0.

Multivariate Stein’s method. We will use the result for multivariate Poisson approximation
[4], Theorem 1. Let

λ11 =
s∑

α=1

P
(
Îα = (1,0,0)

)= s1∑
α=1

s1 − α

n − α
,

λ12 =
s∑

α=1

P
(
Îα = (0,1,0)

)= s1∑
α=1

s2

n − α
,

λ22 =
s∑

α=1

P
(
Îα = (0,0,1)

)= s∑
α=s1+1

s2 − (α − s1)

n − α
,

c(λ) = c(λ11, λ12, λ22) = 1

2
+ max

{
0, log

(
2(λ11 + λ12 + λ22)

)}
.
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[4], Theorem 1, together with an easy calculation using the fact that λ11 ≥ s1(s1 − 1)/2n,
λ12 ≥ s1s2/n and λ22 ≥ s2(s2 − 1)/2n then yields

dTV

(
s∑

α=1

Îα,Poi(λ11) ⊗ Poi(λ12) ⊗ Poi(λ22)

)

≤ 1

(n − s)2 min
{
s3, c(λ)

(
2n(2s1 − 1) + ns2 + 2n(2s2 − 1)

)}

≤ 1

(n − s)2 min
{
s3,5c(λ)sn

}=: Err2 .

(2.19)

Combining (2.18) and (2.19) with the bound∣∣∣∣λ11 − s2
1

2n

∣∣∣∣+
∣∣∣∣λ12 − s1s2

n

∣∣∣∣+
∣∣∣∣λ22 − s2

2

2n

∣∣∣∣≤ max
{

s

n

,
s3

2n(n − s)

}
=: Err3,

we obtain that

dTV

(
s∑

α=1

Iα,Poi
(

s2
1

2n

)
⊗ Poi

(
s1s2

n

)
⊗ Poi

(
s2

2

2n

))

≤ Err1 +Err2 +(1 − e−Err3
)

≤ Err1 +Err2 +Err3 .

(2.20)

When S1 and S2 are fixed subsets with s1, s2 = O(
√

n), the proof of Proposition 2.2 now
follows from (2.20).

Let us now consider the case where Sj ’s are random sets. Observe that that for ε suffi-

ciently small, Erri = o(1) if s ≤ 
1/2+ε
n . If we condition on the sets (Sj )j∈[k] and assume that

s ≤ 
1/2+ε
n , we can therefore couple En and E in such a way that En �= E with probability

o(1); if s > 
1/2+ε
n , we couple them arbitrarily. Since P(s > 

1/2+ε
n ) ≤ 

−1/2−ε
n E[s] = O(−ε

n )

by Markov’s inequality and our assumptions on the expectations of s1 and s2, we see
that the resulting coupling is such that En = E with probability 1 − o(1), showing that
limn→∞ dTV(En,E) = 0, as required.

The proof of Proposition 2.2 is now complete. �

3. Proof of results on preferential attachment model. In this section, we prove The-
orem 1.6. To avoid notational overhead, we recycle some notation and denote the ran-
dom point process Lbl√2mn

(PAn(κ,mn)) for the graph PAn(κ,mn) by ξn. For a subset
A ∈ B(R+), let Vn(A) denote the set of vertices obtained by labeling the vertices uni-
formly from [0,

√
2mn] independently and retaining the vertices with labels in A. For any

V ⊂ [n], let Sn(l;V ) =∑i∈V (κi + di(l)). We will also define a random measure S̄n,κ by

S̄n,κ (A) =
√

2mn

n,κ
Sn(0,Vn(A)).

The main ingredients of the proof can be decomposed into the following lemma and propo-
sitions; in all of them, we assume that min{n,κ ,mn} = ω(logn) and maxi κi = o(n,κ), stat-
ing any additional assumption explicitly.

LEMMA 3.1. If logmn = o(n,κ), then e(PAn(κ,mn)) = mn(1 + o(1)) a.s. PAn(κ,mn).

PROPOSITION 3.2. Let (Vi)i∈[k] be a disjoint collection of vertex subsets such that, for
all i ∈ [k], Sn(0,Vi) = O(n,κ/

√
mn), and for any ε > 0,

lim
n→∞P

(
sup
l≤mn

∣∣∣∣
√

2mnSn(l,Vi)

n,κ + 2l
−

√
2mnSn(0,Vi)

n,κ

∣∣∣∣> ε

)
= 0.(3.1)
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Let En := (E(Vi,Vj ))1≤i≤j≤k , E := (Eij )1≤i≤j≤k , where E(Vi,Vj ) denotes the number of
edges in PAn(κ,mn) with one end-point in Vi and the other end-point in Vj , and E is a col-
lection of independent random variables with Eij ∼ Poisson(2mnSn(0,Vi)Sn(0,Vj )/

2
n,κ),

i �= j , while Eii ∼ Poisson(mnSn(0,Vi)
2/2

n,κ). Then

lim
n→∞dTV(En,E) → 0.

Further, suppose that Vi ’s are random subsets chosen independently of PAn(κ,mn) such that
E[Sn(0,Vi)] = O(n,κ/

√
mn) and such for any ε > 0, (3.1) holds, where the probabilities

and expectations under consideration are to be taken over the joint distribution of Vi ’s and
di(l)’s. Then limn→∞ dTV(En,E) = 0.

We will want to apply this proposition to random sets of the form Vi = Vn(Ai), where
Ai ∈ B(R+), i = 1, . . . , k are pairwise disjoint. To do this, we use the following proposition,
and the fact that E[Sn(0,Vn(Ai))] = �(Ai)n,κ/

√
mn = O(n,κ/

√
mn).

REMARK 12. Before stating the next proposition, let us apply the statements of the pre-
vious one to the sets Vi = {i} to relate the proposition to the heuristic arguments given for
the preferential attachment model in the Introduction. Since our actual proof will not use
this argument, let us not worry about verifying the condition (3.1). Then the statement of the
proposition say that the number of edges between i and j is a Poisson random variable with
parameter 2mnκiκj /

2
n,κ = d̄i d̄j /2mn, and the number of loops at i is a Poisson random vari-

able with parameter d̄2
i /4mn, showing at least heuristically that the preferential attachment

model behaves like a configuration model with degree sequence (d̄i)i∈[n].

PROPOSITION 3.3. Fix A ∈ B(R+), and ε > 0. If mn = o(2
n,κ), then

lim
n→∞P

(
sup
l≤mn

∣∣∣∣
√

2mnSn(l,Vn(A))

n,κ + 2l
−

√
2mnSn(0,Vn(A))

n,κ

∣∣∣∣> ε

)
= 0.

Finally, we need the following analogue of Proposition 2.4.

PROPOSITION 3.4. For any A,B ∈ B(R+), l ∈ N and δ > 0,

P
(∣∣P(ξn(A × B) = l|PAn(κ,mn)

)− P
(
ξn(A × B) = l

)∣∣> δ
)

≤ 2 exp
(
− δ2mn

8�(A)2�(B)2

)
.

First, we complete the proof of Theorem 1.6, given Lemma 3.1, and Propositions 3.3, 3.2
and 3.4, and defer their proofs to the end of the section.

PROOF OF THEOREM 1.6. The equivalence of (ii), (iii) and (iv) can be read of Theo-
rem 1.2 applied to the sequence (d̄i)i∈[n]. All we need to observe is that

∑
i d̄i = 2mn, and that

our assumptions on maxi κi , n,κ and mn imply that maxi d̄i = o(2mn) and mn = ω(logn).
To show equivalence of (i) and (iv), we first note that the assumptions of Theorem 1.6 im-

plies those of Lemma 3.1 and Proposition 3.3. We then apply Proposition 3.2 to the sets
Vn(A1), . . . , Vn(Ak), where Ai ∈ B(R+), i = 1, . . . , k, and rewrite the statement of the
proposition for this case in terms of the random variables S̄n,κ (Ai), i = 1, . . . , k. The proof
is then identical to the proof of the equivalence of (i) and (iv) in Theorem 1.2, once we re-
place Lemma 2.1 by Lemma 3.1, Proposition 2.4 by Proposition 3.4 and Proposition 2.2 by
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Proposition 3.2 and Proposition 3.3. The proof that the sampling limit is given by the graphex
WCM is again the same, once we observe that Proposition 2.3 and (2.4) hold for S̄n,κ , ρn,κ

and (Xn,κ(t))t≥0 where Xn,κ(t) = μn,κ([0, t]). �

Next, we prove Propositions 3.3, Lemma 3.1, and Propositions 3.4 and 3.2, in that
order. We let (Fl)

mn

l=1 denote the canonical filtration associated with the graph process
(PAn(κ, l))

mn

l=1, and let (F ′
l )

mn

l=1 be a filtration, where F ′
l is the minimal sigma algebra con-

taining the information about Vn(A) and PAn(κ, l). Note that F ′
0 is the sigma algebra con-

taining the information about Vn(A) only, while both PAn(κ,mn) and Vn(A) are measurable
with respect to the filtration F ′

mn
.

PROOF OF PROPOSITION 3.3. To avoid cumbersome notation, we write Sn(l) for
Sn(l,Vn(A)) in this proof. Clearly, (Sn(l))l∈[0,mn] is a Markov chain with Sn(0) =∑i∈Vn(A) κi

and conditionally on F ′
l ,

Sn(l + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sn(l) with probability
(n,κ + 2l − Sn(l))

2

(n,κ + 2l)2 ,

Sn(l) + 1 with probability
2Sn(l)(n,κ + 2l − Sn(l))

(n,κ + 2l)2 ,

Sn(l) + 2 with probability
Sn(l)

2

(n,κ + 2l)2 .

(3.2)

Note that for any l ≥ 0,

E
[
Sn(l + 1) − Sn(l)|F ′

l

]= 2Sn(l)

n,κ + 2l
=⇒ E

[
Sn(l + 1)

n,κ + 2(l + 1)

∣∣∣∣F ′
l

]
= Sn(l)

n,κ + 2l
,

and, therefore, (
√

2mnSn(l)
n,κ+2l

)
mn

l=0 is a martingale with respect to (F ′
l )

mn

l=0. Let QV denote the
quadratic variation of this martingale. To compute QV, note that

E

[(√
2mnSn(l + 1)

n,κ + 2l + 2
−

√
2mnSn(l)

n,κ + 2l

)2∣∣∣∣F ′
l

]

≤ 4mn

(n,κ + 2l)2(n,κ + 2l + 2)2

× ((n,κ + 2l)2
E
[(

Sn(l + 1) − Sn(l)
)2|F ′

l

]+ 4S2
n()

)
(3.3)

≤ 4mn

(n,κ + 2l)4

(
2(n,κ + 2l)2

E
[(

Sn(l + 1) − Sn(l)
)|F ′

l

]+ 4S2
n()

)

= 16mnSn(l)

(n,κ + 2l)3 + 16mnS
2
n()

(n,κ + 2l)4 .

We will need the following fact, whose proof is given immediately after completing the proof
of this proposition.

FACT 3.1. E[Sn(l)] = O(
n,κ+2l√

mn
) and E[Sn(l)

2] = o(
(n,κ+2l)2√

mn
).

Using Fact 3.1, (3.3) now shows that for all t ∈ [0,1], we have

E
[
QV(tmn)

]= ∑
l<tmn

E

[(√
2mnSn(l + 1)

n,κ + 2l + 2
−

√
2mnSn(l)

n,κ + 2l

)2∣∣∣∣F ′
l

]

≤ 8mn

∞∑
l=0

(
E[Sn(l)]

(n,κ + 2l)3 + E[Sn(l)
2]

(n,κ + 2l)4

)
= O

(√
mn

n,κ

)
= o(1).
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An application of Doob’s inequality [34], Chapter 1, Section 9, Theorem 1(3), now completes
the proof. �

PROOF OF FACT 3.1. Recall that (
√

2mnSn(l)
n,κ+2l

)
mn

l=1 is a martingale with respect to (F ′
l )

mn

l=1.
Thus,

E
[
Sn(l)

]= n,κ + 2l

n,κ

E
[
Sn(0)

]= O

(
n,κ + 2l√

mn

)
.

For bound on the second moment, note that (3.2) implies

E
[
Sn(l + 1)2]= E

[(
Sn(l)

)2](1 + 4

(n,κ + 2l)
+ 2

(n,κ + 2l)2

)
+ 2E[Sn(l)]

n,κ + 2l

= E
[(

Sn(l)
)2](1 + 2

(n,κ + 2l)

)2
+ O

(
1√
mn

)
,

which in turn shows that

E[(Sn(l))
2]

(n,κ + 2l)2 ≤ E[Sn(0)2]
2
n,κ

+ O

(
1√
mn

) ∑
k=0

1

(n,κ + 2k + 1)2

= E[Sn(0)2]
2
n,κ

+ O

(
1

n,κ
√

mn

)

Combined with the bound

E
[
Sn(0)2]= Var

(
Sn(0)

)+E
2[Sn(0)

]= O

(
n,κ√
mn

max
i∈[n] κi + 2

n,κ

mn

)
= O

(
2
n,κ√
mn

)
,

(where the last step follows using our assumption that maxi∈[n] κi = o(n,κ)), the claim now
follows. �

PROOF OF LEMMA 3.1. Recall that, according to the definition preceding Lemma 3.1,
we have Sn(l, {i}) := di(l) + κi . Let Ll denote the number of loops in PAn(κ, l), and let

Pl =
∑

i∈[n](Sn(l,{i}))2

(n,κ+2l)2 . Conditionally on Fl , we then have that

Ll+1 =
{
Ll + 1 with probability Pl,

Ll otherwise.

Setting L′
l = Ll −∑l−1

k=0 Pk , we see that (L′
l)

mn

l=0 is a Martingale with respect to the filtration
(Fl)

mn

l=0, and that L′
l − Pl ≤ L′

l+1 ≤ L′
l + 1. The Azuma–Hoeffding inequality and the fact

that L0 = 0 then implies that

P

(
Lmn ≥

mn−1∑
l=0

Pl + λmn

)
= P
(
L′

mn
≥ λmn

)≤ e− λ2mn
2 .(3.4)

Next, define Ql :=∑i∈[n](Sn(l, {i}))2. By a simple calculation using the analogue of (3.2)
for Sn(l, {i}), we get that

E[Ql+1|Fl] = Ql

(
1 + 4

(n,κ + 2)
+ 2

(n,κ + 2)2

)
+ 2 ≤ Ql

(
n,κ + 2 + 2

n,κ + 2

)2
+ 2,

which we rewrite as

E[Pl+1|Fl] ≤ Pl + 2

(n,κ + 2 + 2)2
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to conclude that P ′
l = Pl −∑l

k=1
2

(n,κ+2k)2 is a supermartingale. Next, we note that upon the

addition of an edge at step l + 1, either one of the terms in Ql change from (Sn(l, {i}))2 to
(Sn(l, {i}) + 2)2 or two of them change from (Sn(l, {i}))2 to (Sn(l, {i}) + 1)2. In either case,
the total change is at most 4(n,κ + 2) + 4. A straightforward calculation using the fact that
Ql ≤ (n,κ + 2)2 then shows that

− 4

n,κ + 2l + 2
≤ P ′

l+1 − P ′
l ≤ 4

n,κ + 2l + 2
.

The Azuma–Hoeffding inequality combined with the facts that P ′
0 = P0 then implies that

P
{∃l ≤ mn : P ′

l ≥ P0 + λ
}≤ mne

− λ2n,κ
32 ≤ e− λ2n,κ

64(3.5)

provided logmn = o(n,κ) and n large enough. Combining (3.4) and (3.5) then shows that
with probability at least 1 − e−λ2mn/2 − e−λ2n,κ/64, we have that

Lmn <

mn−1∑
l=0

Pl + λmn ≤
mn−1∑
l=0

P ′
l + mn

2
n,κ

+ λmn ≤ mnP0 + mn

2
n,κ

+ 2λmn = (2λ + o(1)
)
mn,

where in the last step we used that P0 = 1
2
n,κ

∑
i∈[n] κ2

i = o(n,κ) 1
2
n,κ

∑
i∈[n] κi = o(1). By our

assumption that min{mn, n,κ} = ω(logn), the the error probability is summable for all fixed
λ > 0. Since λ was arbitrary, this proves that Lmn/mn → 0 with probability 1. �

PROOF OF PROPOSITION 3.4. Let X := P(ξn(A × B) = l|PAn(κ,mn)) and let (Yl :=
E[X|Fl])mn

l=0 denote the Doob martingale with respect to the filtration (Fl)
mn

l=0. Therefore,
Y0 = E[X], while Ymn = X. Moreover, X can change by changing the status of the edge (i, j)

only if (i, j) ∈ Vn(A) × Vn(B) or (j, i) ∈ Vn(A) × Vn(B). Thus, the martingale difference
|Yl − Yl−1| can be bounded as

|Yl − Yl−1| ≤ 2�(A)�(B)

mn

.

An application of the Azuma–Hoeffding inequality now completes the proof. �

PROOF OF PROPOSITION 3.2. We prove the proposition for k = 2, the general case fol-
lows similarly. For l ∈ [mn], we denote the added edge at time l by {v1(l), v2(l)}, and let

Il+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1,0,0) if v1(l), v2(l) ∈ V1,

(0,0,1) if v1(l), v2(l) ∈ V2,

(0,1,0) if v1(l) ∈ V1, and v2(l) ∈ V2 or vice versa,

(0,0,0) otherwise.

Note that (E(V1,V1),E(V1,V2),E(V2,V2)) =∑mn

l=1 Il . To approximate this sum in total vari-
ation distance, we first couple the vectors Il to independent random vectors, and then we
couple the sum of independent indicators to independent Poisson random variables.

For the first step, we will use an explicit coupling. Let ((U1(l),U2(l)))
mn

l=1 be i.i.d. random
variables, with (U1(1),U2(1)) being uniformly distributed on the unit square [0,1]2. For
i = 1,2, we denote the events

Gi1(l) =
{
Ui(l) ≤ Sn(l,V1)

n,κ + 2l

}
, Gi2(l) =

{
Sn(l,V1)

n,κ + 2l
< Ui(l) ≤ Sn(l,V1) + Sn(l,V2)

n,κ + 2l

}
,

Ĝi1(l) =
{
Ui(l) ≤ Sn(0,V1)

n,κ

}
, Ĝi2(l) =

{
Sn(0,V1)

n,κ

< Ui(l) ≤ Sn(0,V1) + Sn(0,V2)

n,κ

}
.
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We then generate the processes (Sn(l,Vi))
mn

l=0, i = 1,2, (Il)
mn

l=0 and an independent collection
(Îl)

mn

l=0 jointly as follows:

Sn(l + 1,Vi) =

⎧⎪⎪⎨
⎪⎪⎩

Sn(l,Vi) + 2 on G1i (l) ∩ G2i (l),

Sn(l,Vi) + 1 on
(
G1i (l) ∩ G2i (l)

c)∪ (G1i (l)
c ∩ G2i (l)

)
,

Sn(l,Vi) otherwise,

Il+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1,0,0) on G11(l) ∩ G21(l),

(0,0,1) on G12(l) ∩ G22(l),

(0,1,0) on
(
G11(l) ∩ G22(l)

)∪ (G12(l) ∩ G21(l)
)
,

(0,0,0) otherwise.

(3.6)

The definition of Îl+1 is identical to (3.6) by replacing Gij by Ĝij , i, j = 1,2. It is easy to see
that the above give the processes (Sn(l,Vi))

mn

l=0, i = 1,2, (Il)
mn

l=0 defined before and (Îl)
mn

l=0 is
an independent collection. Next, fix ε > 0 and let

Al =
{

sup
l′≤l

∣∣∣∣
√

2mnSn(l
′,Vi)

n,κ + 2l′
−

√
2mnSn(0,Vi)

n,κ

∣∣∣∣≤ ε

}
, A =

mn⋃
l=1

Al .

By the assumption (3.1), P(Ac) = o(1) and

P
(
Il+1 �= I ′

l+1|F ′
l

)
≤ 2
[∣∣∣∣Sn(l,V1)

n,κ + 2l
− Sn(0,V1)

n,κ

∣∣∣∣+
∣∣∣∣Sn(l,V1 ∪ V2)

n,κ + 2l
− Sn(0,V1 ∪ V2)

n,κ

∣∣∣∣
]

×
[
Sn(l,V1 ∪ V2)

n,κ + 2l
+ Sn(0,V1 ∪ V2)

n,κ

]
,

so that P(Il+1 �= I ′
l+1|F ′

l )1Al
≤ Cε/mn, for some constant C > 0. Thus,

P(∃l : Il+1 �= Îl+1)

= P(∃l : Il+1 �= Îl+1,A) + o(1) ≤ P(∃l : Il+1 �= Îl+1,Al) + o(1)

≤
mn∑
l=1

E
[
P
(
Il+1 �= I ′

l+1|F ′
l

)
1Al

]+ o(1) ≤ Cε + o(1).

Since ε > 0 is arbitrary, limn→∞P(∃l : Il+1 �= Îl+1) = 0. Now, we can use multivariate
Stein’s method to approximate

∑mn

l=1 Îl in an identical manner as at the end of Section 2.1,
this time with

λ11 =
mn∑
α=1

P
(
Îα = (1,0,0)

)= mn

2
n,κ

Sn(0,V1)
2,

λ12 =
mn∑
α=1

P
(
Îα = (0,1,0)

)= 2mn

2
n,κ

Sn(0,V1)Sn(0,V2),

λ22 =
mn∑
α=1

P
(
Îα = (0,0,1)

)= mn

2
n,κ

Sn(0,V2)
2.

�
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4. Proof of results on generalized random graph. We first establish that the number of
edges in GRGn(w) is concentrated around a deterministic value. Recall that for any graph G,
we use e(G) to denote the number of nonloop edges in G, and that Ln denotes the 1 norm
of the weight vector, Ln =∑i∈[n] wi .

LEMMA 4.1. For 0 < ε ≤ 1,

P
(∣∣e(GRGn(w)

)−E
[
e
(
GRGn(w)

)]∣∣> εLn

)≤ 2 exp
(
−ε2Ln

3

)
,

1

Ln

E
[
e
(
GRGn(w)

)]= 1

2

∫ ∞
0

∫ ∞
0

xy

1 + xy
ρn(dx)ρn(dy) + o(1).

(4.1)

We denote the the random point process Lbl√Ln
(GRGn(w)) for the graph GRGn(w) by

ξn. Let ξ denote the random adjacency measure corresponding to the graphex W1
GRG.

PROPOSITION 4.2. Under Assumption 1, as n → ∞,

P
(
ξn(A) = 0

)→ P
(
ξ(A) = 0

)
,

for any A that is a union of disjoint rectangles in R
2+.

PROPOSITION 4.3. Suppose that Assumption 1 holds. For 0 < ε ≤ 1 and A ⊂ B(R2+)

that is a union of disjoint rectangles, there exists a constant C = C(ε,A) > 0 such that

P
(∣∣P(ξn(A) = 0|GRGn(w)

)− P
(
ξn(A) = 0

)∣∣> ε
)≤ e−CLn.

We first prove Theorem 1.7, given these results.

PROOF OF THEOREM 1.7. Lemma 4.1 implies that for any δn → 0,

P
(∣∣e(GRGn(w)

)−E
[
e
(
GRGn(w)

)]∣∣> δnLn

)≤ 2 exp
(
−δ2

nLn

3

)
.

As Ln = ω(logn), we can choose δn → 0 such that the above probabilities are summable. As
a result, Lemma 4.1 implies PGRG a.s.,

1

Ln

e
(
GRGn(w)

)− 1

Ln

E
[
e
(
GRGn(w)

)]→ 0.

By Lemma D.1, it is therefore enough to show that

L
(
ξn|GRGn(w)

)→ L(ξ), PGRG a.s.

To this end, we use [33], Theorem A.1. To apply this theorem, we need to show that for every
union A is a union of disjoint rectangles in R

2+, we have

P
(
ξn(A) = 0|GRGn(w)

)→ P
(
ξ(A) = 0

)
, PGRG a.s.,(4.2)

E
[
ξn(A)|GRGn(w)

]→ E
[
ξ(A)

]
, PGRG a.s.(4.3)

Propositions 4.2, and 4.3 together directly imply (4.2). We will verify (4.3) only for A =
[0, t)2, leaving the general case to the reader. Note that

E
[
ξn(A)|GRGn(w)

]= (1 + o(1)
) t2

Ln

e
(
GRGn(w)

)→ t2

2
c, PGRG a.s.,

where the last step follows from Lemma 4.1. This concludes the proof. �
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PROOF OF COROLLARY 1.8. Consider a sampling convergent subsequence of GRGn(w).
Observing that

0 ≤
∫ ∞

0

∫ ∞
0

xy

1 + xy
ρn(dx)ρn(dy) ≤

(∫ ∞
0

xρn(dx)

)(∫ ∞
0

yρn(dy)

)
= 1.

We may therefore choose a further subsequence such that (1.8) holds for some c > 0. By
Theorem 1.7, this subsequence is a.s. sampling convergent to Wc

GRG. Since a sequence cannot
converge to Wc

GRG and Wc′
GRG for c �= c′, this completes the proof. �

PROOF OF COROLLARY 1.9. The proof is similar to that of Corollary 1.4 in Section 2.1,
and thus we only sketch the main ideas. First, by our assumption that a = 0,

lim
ε→0

lim sup
n→∞

∫ ε

0
xρn(dx) = 0.

As in the proof of Corollary 1.4, we set V>ε = {i : wi > ε
√

Ln} and set EGRG(ε) to denote
the number of edges with at least one end in V≤ε . This implies

E
[
EGRG(ε)

]= ∑
i,j∈V≤ε :i<j

pij + ∑
i∈V≤ε

∑
j /∈V≤ε

pij ≤ ∑
i∈V<ε

∑
j∈[n]

wiwj

Ln

= Ln

∫ ε

0
xρn(dx),

where in the second to last step we used that pij ≤ wiwj/Ln. Next, concentration for sum
of independent Bernoulli variables [29], (2.5) and (2.6), Theorem 2.8, and the fact that
E[EGRG(ε)] ≤ Ln immediately implies that as long as 0 < δn ≤ 1,

P
(∣∣EGRG(ε) −E

[
EGRG(ε)

]∣∣> δnLn

)≤ 2 exp
(
− L2

nδ
2
n

2(E[EGRG(ε)] + Lnδn/3)

)

≤ 2e−Lnδ2
n

3 .

Choosing δn = o(1) in such a way that the error bound is summable (which is possible by
our assumption that Ln = ω(logn)), we conclude that PGRG a.s., EGRG(ε) ≤ Ln Err(ε, n) +
o(Ln), where we recall the notation Err(ε, n) from the proof of Corollary 1.4. The rest of the
proof follows exactly as Corollary 1.4, upon setting Un to be the set of vertices corresponding
to V≤ε . �

It remains to establish Propositions 4.2–4.3 and Lemma 4.1. We prove Lemma 4.1 first and
defer the proof of Proposition 4.2 to Section 4.1 and that of Proposition 4.3 to Section 4.2.

PROOF OF LEMMA 4.1. Note that

E
[
e
(
GRGn(w)

)]= 1

2

∑
i �=j

wiwj

Ln + wiwj

= 1

2

∑
i,j∈[n]

wiwj

Ln + wiwj

− 1

2

∑
i∈[n]

w2
i

Ln + w2
i

.

Since ∑
i∈[n]

w2
i

Ln + w2
i

≤ ∑
i:wi≤√

Ln

w2
i

Ln

+ ∑
i:wi>

√
Ln

1 = O(
√

Ln),

it follows that
1

Ln

E
[
e
(
GRGn(w)

)]= 1

2

∫ ∞
0

∫ ∞
0

xy

1 + xy
ρn(dx)ρn(dy) + o(1).

(4.1) follows by standard application of martingale concentration inequalities for sums of
independent Bernoulli random variables such as [29], (2.5) and (2.6), Theorem 2.8, together
with the observation that E[e(GRGn(w))] ≤ Ln

∫ ∫ xy
1+xy

ρn(dx)ρn(dy) ≤ Ln. �
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4.1. Proof of Proposition 4.2. Fix any k ≥ 1, let (Bi)i∈[k] be a collection of disjoint
intervals, and let En(Bi,Bj ) denote the number of edges between vertices with labels in Bi

and Bj , respectively. We will want to prove that

lim
n→∞P

(
En(Bi × Bj) = 0,∀1 ≤ i ≤ j ≤ k

)= P
(
ξ(Bi × Bj) = 0,∀1 ≤ i ≤ j ≤ k

)
.

Let N = (wi, θi)i≥1 denote the Poisson point process on R
2+ with intensity ρ(dw) ⊗ dθ .

Further let Niε = N([ε,∞) × Bi). Throughout the proof, Err(ε, n) is a generic notation for
some function f (ε,n) s.t. limε→0 lim supn→∞ f (ε,n) = 0. Similarly,

lim
ε→0

lim sup
K→∞

lim sup
n→∞

Err(ε,K,n) = 0

and

lim
K→∞ lim sup

ε→0
lim sup
M→∞

lim sup
n→∞

Err(K, ε,M,n) = 0.

Fix ε > 0 and let V>ε = {i ∈ [n] : wi > ε
√

Ln} and V c≤ε = V>ε . Recalling that we assigned a
random label in [0,

√
Ln] to each vertex in [n], let Vi be the set of vertices with labels in Bi .

We set V >
i = Vi ∩ V>ε , V

≤
i = Vi ∩ V≤ε and Ti =∑u∈V

≤
i

w̄u, where w̄u = wu/
√

Ln.
Also let Iij := 1{i and j create an edge}. Thus, (Iij )1≤i<j≤n is an independent collection

of Bernoulli random variables with P(Iij = 1) = pij = w̄iw̄j /(1 + w̄iw̄j ). Defining

Fn
ii(ε) = ∏

u<v
u,v∈V >

i

(1 − Iuv)
∏

u∈V >
i

v∈V
≤
i

(1 − Iuv)
∏
u<v

u,v∈V
≤
i

(1 − Iuv)

= Fn
ii(ε,1)F n

ii(ε,2)F n
ii(ε,3),

F n
ij (ε) = ∏

u∈V >
i

v∈V >
j

(1 − Iuv)
∏

u∈V
≤
i

v∈V >
j

(1 − Iuv)
∏

u∈V >
i

v∈V
≤
j

(1 − Iuv)
∏

u∈V
≤
i

v∈V
≤
j

(1 − Iuv)

= Fn
ij (ε,1)F n

ij (ε,2)F n
ji(ε,2)F n

ij (ε,3),

(4.4)

we note that

P
(
En(Bi × Bj) = 0,∀1 ≤ i ≤ j ≤ k

)= E

[ ∏
1≤i≤j≤k

F n
ij (ε)

]
(4.5)

We first state a lemma which identifies a “good” event.

LEMMA 4.4. Define the events

A1i :=
{∣∣Ti −E[Ti]

∣∣≤ ε1/4,
∑

u∈V
≤
i

w2
u ≤ ε1/2Ln

}
,

A2i :=
{∑

u∈Vi

w̄u ≤ K

}
, A3i := {∣∣V >

i

∣∣≤ M
}
.

Then, for A =⋂i∈[k](A1i ∩A2i ∩A3i ), P(Ac) = Err(K, ε,M,n).

Let P[k] (resp., E[k]) denote the conditional probability measure (resp., expectation) con-
ditional on the choices of the random sets (V r

i )i∈[k],r=>,≤. The next lemma characterizes the
asymptotic behavior of Fn

ii,F
n
ij .
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LEMMA 4.5. On the set A, for all 1 ≤ i ≤ j ≤ k,

E[k]
[
Fn

ij (ε,3)
]=
{

e−(E[Ti ])2/2 + Err(ε, n) for i = j,

e−E[Ti ]E[Tj ] + Err(ε, n) for i �= j,
(4.6)

E[k]
[
Fn

ij (ε,2)
]= e

−E[Ti ]∑v∈V >
j

w̄v (
1 + Err(K, ε,n)

)
.(4.7)

Moreover, for all i ∈ [k],
dTV
(
L
(∣∣V >

i

∣∣),Poi
(
�(Bi)ρ

([ε,∞)
)))= Err(ε,M,n).(4.8)

Next, we prove Proposition 4.2, deferring the proof of the lemmas to the later part of this
section.

PROOF OF PROPOSITION 4.2. To prove the proposition, we use the explicit expres-
sion for P(ξ(Bi × Bj) = 0,∀1 ≤ i ≤ j ≤ k) given in Lemma C.2, the expression (4.5) for
P(En(Bi × Bj) = 0,∀1 ≤ i ≤ j ≤ k), and Lemmas 4.4 and 4.5. To avoid cumbersome no-
tation, we prove this result for k = 1, and B1 = [0, t]. The generalization to k ≥ 1 and ar-
bitrary Bi ’s is identical except the notational overhead, and thus we will sketch the general
proof after proving the k = 1 case. Let Vt denote the set of vertices with labels in [0, t], and
V >

t = Vt ∩ V>ε and V
≤
t = Vt ∩ V≤ε . Also recall that T1 =∑u∈V

≤
t

w̄u. Define the quantities

F1 := ∏
i<j,i,j∈V >

t

(1 − Iij ), F2 := ∏
i∈V >

t ,j∈V
≤
t

(1 − Iij ),

F3 := ∏
i<j,i,j∈V

≤
t

(1 − Iij ).
(4.9)

Thus, P(ξn([0, t]2) = 0) = E[F1F2F3]. Notice that F1,F2,F3 ≤ 1 almost surely, which we
will use throughout the proof.

Next, by Assumption 1,

E[T1] = t√
Ln

∑
i∈V≤ε

wi√
Ln

= t

∫ ε

0
xρn(dx) = at + Err(ε, n).(4.10)

Using Lemma 4.5, (4.6) and (4.7) together with (4.10) and Lemma 4.4,

E[F1F2F3] = E[F1F2F31A] + Err(K, ε,M,n)

= e− a2t2
2 E

[
e−at

∑
i∈V >

t
w̄i

∏
i<j,i,j∈V >

t

1

1 + w̄iw̄j

1A

]
+ Err(K, ε,M,n)

= e− a2t2
2 E
[
f
(
n,
∣∣V >

t

∣∣)]+ Err(K, ε,M,n),

(4.11)

where we set

f (n, k) :=
∫
[ε,∞)k

e−at
∑k

i=1 wi
∏

1≤i<j≤k

1

1 + wiwj

k∏
i=1

ρn(dwi)

ρn([ε,∞))
.

Indeed, if we take the expectation in the second line in (4.11) and condition on |V >
t | = k,

the elements of V >
t are a sequence of k numbers chosen without replacement from {i ∈

[n] : w̄i > ε}. On the event A, where k ≤ K , we can replace the without replacement sampling
by sampling with replacement at the cost of an error Err(K,n), at which point we get a k

independent samples from ρn(dw) conditioned on w > ε. This proves the last identity in
(4.11).
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Now, using the vague convergence of ρn from Assumption 1, we get that for any k ≥ 1 and
any ε > 0 such that ρ has no atom at ε,

lim
n→∞f (n, k) =

∫
[ε,∞)k

e−at
∑k

i=1 wi
∏

1≤i<j≤k

1

1 + wiwj

k∏
i=1

ρ(dwi)

ρ([ε,∞))
=: f (k).

Therefore, Lemma 4.5, (4.8) implies that, for continuity point ε > 0 of ρ, and any R ≥ 1,

lim
n→∞

R∑
k=1

∣∣f (n,
∣∣V >

t

∣∣)P(∣∣V >
t

∣∣= k
)− f (k)P

(
Poi
(
tρ
([ε,∞)))= k)

∣∣= 0.(4.12)

Now, notice that max{f (n, k), f (k)} ≤ 1. Thus,

∑
k>R

E
[
f (n, k)|∣∣V >

t

∣∣= k
]
P
(∣∣V >

t

∣∣= k
)≤ ∑

k>R

(|V>ε|
k

)(
t√
Ln

)k

≤ ∑
k>R

1

k!
(
tρ
([ε,∞)

))k
,

(4.13)

which goes to zero as R → ∞. Thus (4.11), (4.12) and (4.13) together with Lemma C.2
imply that

E[F1F2F31A] = P
(
ξ
([0, t]2)= 0

)+ Err(K, ε,M,n),

and the proof follows using Lemma 4.4.
Let us now sketch the proof for the general k case briefly. For simplicity, let us consider

Bi = [ti−1, ti−1 + ti], where t0 = 0 and ti > 0 for i ∈ [k]. Recall the notations in (4.4). From
the identity (4.5), we can use identical computations as in (4.11) that yields

P
(
En(Bi × Bj) = 0,∀1 ≤ i ≤ j ≤ k

)
= E

[ ∏
1≤i≤j≤k

F n
ij (ε)1A

]
+ Err(K, ε,M,n)

= e− a2
2
∑k

i=1 t2
i −a2∑

i<j ti tjE
[
f̃
(
n,
(∣∣V >

i

∣∣)k
i=1

)]+ Err(K, ε,M,n),

where we set

f̃
(
n, (ri)

k
i=1
) := ∫

[ε,∞)
∑k

i=1 ri
e−a

∑
i �=j ti

∑rj
l=1 wjl

∏
1≤i<j≤k

∏
1≤l1≤ri
1≤l2≤rj

1

1 + wil1wjl2

×
k∏

i=1

∏
1≤l1<l2≤ri

1

1 + wil1wil2

k∏
i=1

ri∏
l=1

ρn(dwil)

ρn([ε,∞))
.

The rest of the proof is identical to the case k = 1. �

Finally, we prove Lemma 4.4 and Lemma 4.5. To avoid notational overhead, we again
prove these for the special case k = 1, and B1 = [0, t] and the generalization to k > 1 and
general Bi’s follow using identical arguments. Recall the notations Vt , V >

t , V ≤
t defined above

(4.9), which will be used throughout the proof.

PROOF OF LEMMA 4.4. First, note that

E

[ ∑
i∈V

≤
t

w2
i

]
≤ ε
√

LnE

[∑
i∈Vt

wi

]
= tε

∑
i∈[n]

wi = tεLn,(4.14)
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where the first inequality follows using maxi∈V
≤
t

wi ≤ ε
√

Ln. Further,

Var(T1) = ∑
i∈V≤ε

w2
i

Ln

t√
Ln

(
1 − t√

Ln

)
≤ tε

Ln

∑
i∈V c

>ε

wi ≤ tε.

Thus, by Chebyshev’s inequality, together with (4.14) and Markov’s inequality yields
P(Ac

1) = Err(ε, n). Next, again by Markov’s inequality,

P
(
Ac

2
)≤ 1

K
E

[∑
i∈Vt

w̄i

]
= 1

K

t

Ln

∑
i∈[n]

wi = t

K
= Err(1/K,n).

Finally, |V >
t | ∼ Bin(|V>ε|, t/√Ln). Thus, another application of Markov’s inequality yields

P
(
Ac

3
)≤ t |V>ε|√

LnM
= tρn([ε,∞))

M
= Err(ε,M,n). �

PROOF OF LEMMA 4.5. First, observe that, on the event A defined in Lemma 4.4,

E[F2|Vt ] = ∏
i∈V >

t ,j∈V
≤
t

1

1 + w̄iw̄j

= e
−T1

∑
i∈V >

t
w̄i+O(

∑
i∈V >

t
w̄2

i

∑
j∈V

≤
t

w̄2
j )

= e−E[T1]∑i∈V >
t

w̄i
(
1 + Err(K, ε,n)

)
,

where we used that
∑

i∈V >
t

w̄2
i ≤ (

∑
i∈Vt

w̄i)
2 to obtain the final error bound, proving (4.7).

Next, let λ = ∑i,j∈V
≤
t

pij . Using standard bounds for coupling sums of independent
Bernoulli random variables to Poisson random variables [24], Theorem 2.10,

dTV

(
L
( ∑

i<j,i,j∈V
≤
t

Iij |V >
t ,V

≤
t

)
,Poi(λ)

)
≤ ∑

i<j,i,j∈V
≤
t

p2
ij ≤ (

∑
i∈V

≤
t

w2
i )

2

L2
n

≤ ε,

where the last inequality holds on A1. Moreover, on A1,

∑
i<j,i,j∈V

≤
t

pij ≤ (
∑

i∈V
≤
t

wi)
2

2L2
n

= T 2
1

2
= (E[T1])2

2
+

4
√

ε

2

( 4
√

ε

2
+E[T1]

)
= O

(
4
√

ε
)
,

∑
i<j,i,j∈V

≤
t

pij ≥ (
∑

i∈V
≤
t

wi)
2

2L2
n

− 1

L2
n

∑
i∈V

≤
t

w2
i = (E[T1])2

2
+ O

(
4
√

ε
)

and, therefore,

∑
i<j,i,j∈V

≤
t

pij = (E[T1])2

2
+ O

(
4
√

ε
)
.

Thus, on A,

dTV

(
L
( ∑

i<j,i,j∈V
≤
t

Iij |V >
t ,V

≤
t

)
,Poi

((
E[T1])2/2

))= Err(ε, n),

and (4.6) follows immediately.
Finally, we prove (4.8). Note that |V >

t | ∼ Bin(|V>ε|, t/√Ln). The proof follows from
standard inequalities for distance between Binomial and Poisson random variables [24],
Theorem 2.10, which implies that the left-hand side of (4.8) is bounded by |V>ε|t2/Ln ≤
Mt2/Ln = Err(M,n). Since |V>ε|t/√Ln = tρn([ε,∞)) = tρ([ε,∞)) + Err(n), provided ρ

does not have an atom at ε; since the limit ε → 0 can be taken through the continuity points,
the proof follows. �
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4.2. Concentration.

PROOF OF PROPOSITION 4.3. We only give a proof for A = [0, t] × [0, s] leaving the
general case to the reader. Let R = ( n2 ) and let (pirjr )r∈[R] denote a nonincreasing ordering
of the pij ’s. Let Ir denote the indicator that an edge has been created between ir and jr ;
thus Ir ∼ Ber(pirjr ), independently over r ∈ [R]. To simplify notation, let X = P(ξn(A) =
0|Gn). Further, for r =, . . . ,R, let Fr = σ(Ii : i ∈ [r]) (where we used the notation [0] = ∅})
and define Xr = E[X|Fr ]. Thus, (Xr)

R
r=0 is a martingale with respect to the filtration (Fr )

satisfying X0 = E[X] and XR = X. We will apply a concentration inequality from [21],
Theorems 18, 22. Thus, if we can show that

(4.15) Var(Xr |Fr−1) ≤ σ 2
r , |Xr − Xr−1| ≤ M,

then

(4.16) P
(∣∣X −E[X]∣∣> ε

)≤ 2 exp
(
− ε2

2(
∑R

r=1 σ 2
r + Mε/3)

)
.

Thus, we need to obtain the correct M and σ 2
r such that (4.15) holds. Note that

E[X|Fr−1] = pirjr

(
E[X|Fr−1, Ir = 1] −E[X|Fr−1, Ir = 0])

+E
[
X|(Fr−1, Ir = 0

]
,

E[X|Fr ] = Iir jr

(
E[X|Fr−1, Ir = 1] −E[X|Fr−1, Ir = 0])

+E[X|Fr−1, Ir = 0].

(4.17)

Moreover, X can change by changing the status of the edge (ir , jr) only if both ir , jr ∈
Vs ∪ Vt , and thus

∣∣E[X|Fr−1, Ir = 1] −E[X|Fr−1, Ir = 0]∣∣≤ (s + t)2

Ln

.(4.18)

Combining (4.17) and (4.18),

(4.19) |Xr − Xr−1| ≤ |Ir − pirjr |
(s + t)2

Ln

.

Therefore,

Var(Xr |Fr−1) = E
[
(Xr − Xr−1)

2|Fr−1
]≤ (s + t)4

L2
n

E
[
(Ir − pirjr )

2]≤ (s + t)4

L2
n

pirjr ,

where the second step follows from E[Xr |Fr−1] = Xr−1 and the third step follows from
(4.19). Thus, we can apply (4.16) with σ 2

r = (s + t)4pirjr /L
2
n, and M = (s + t)2/Ln. Now,

the proof of Proposition 4.3 follows by using the fact that
∑

i �=j pij ≤∑i �=j wiwj/Ln ≤ Ln.
�

5. Proofs of results on bipartite configuration model. The proof of Theorem 1.10 is
very similar to that of Theorem 1.2 for the configuration model and again relies on three key
propositions, whose proofs are also similar to those of the corresponding key propositions
from the proof of Theorem 1.2. We will outline this proof strategy by stating the key propo-
sitions, but we will leave both the reduction of Theorem 1.10 to these propositions, and the
proofs of the propositions themselves to the reader.
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PROPOSITION 5.1. Let En(S, S′) denote the number of edges created between the set
of half-edges S and S′ in the construction of BipCMn(d). Consider k disjoint subsets of
half-edges (Si)i∈[k] such that |Si | = O(

√
n) for all i ∈ [k]. Let Sij = Si ∩ Vj , i ∈ [k], j =

1,2. Let En = (En(Si, Sj ))1≤i≤j≤k , E := (Eij )1≤i≤j≤k , where Eij ∼ Poisson((|Si1||Sj2| +
|Si2||Sj1|)/n) for i �= j , Eii ∼ Poisson(|Si1||Si2|/n), and E is an independent collection.
Then, as n → ∞,

dTV(En,E) → 0.

Moreover, if Sj ’s are random disjoint subsets chosen independently of BipCMn(d) and sat-
isfying E[|Sj |] = O(

√
n), then limn→∞ dTV(En,E) = 0, where both En and E refer to the

joint distribution, including in particular the randomness stemming from the random sets
Sj ’s.

PROPOSITION 5.2. Let Vn(A) denote the set of vertices obtained by labeling the vertices
uniformly from [0,

√
n] and then retaining the vertices with labels in A. For a vertex set V ,

define S̄n(V ) = 1√
n

∑
i∈V di . For any disjoint collection of sets (Ai)i∈[k] from B(R+), let

Vij denote the set of vertices in Vj with labels in Ai , and α = (αij )i∈[k],j=1,2 ∈ R
2k . Define

�((Vij )i∈[k],j=1,2) := E[ei
∑2

j=1
∑

i∈[k] αij S̄n(Aij )]. Then

�
(
(Vij )i∈[k],j=1,2

)= exp
((

1 + o(1)
) ∑
j=1,2

∑
i∈[k]

�(Ai)

∫ (
eiαij x − 1

)
ρnj (dx)

)
.

PROPOSITION 5.3. For any A,B ∈ B(R+), l ∈ N
∗ and δ > 0,

P
(∣∣P(ξn(A × B) = l|BipCMn(d)

)− P
(
ξn(A × B) = l

)∣∣> δ
)

≤ 2 exp
(
− δ2n

12�(A)2�(B)2

)
.

APPENDIX A: SAMPLING CONVERGENCE FOR MULTIGRAPHS

In this section, we prove Proposition 1.1. The corresponding result for simple graphs was
established in [12]. The extension to multigraphs is relatively straightforward, and thus we
just sketch the proof.

PROOF OF PROPOSITION 1.1. Taking into account Remark 1, which implies that any
exchangeable adjacency measure can be represented by a possibly random multigraphex,
the proof of [12], Lemma 3.2, can be immediately adapted to the multigraph setting. The
only crucial point to note is that [12] use [43], Lemma 4.11, which, in turn, depends on the
discreteness of the space of finite graphs. In the case of multigraphs, that is again true because
the sampled graph almost surely take values in the space of multigraphs with finite number
of edges, on which the discrete topology can be similarly defined. �

APPENDIX B: PROPERTIES OF COMPLETELY RANDOM MEASURES AND LÉVY
PROCESSES

In the proof of Theorem 1.2, we require the notion of completely random measure, which
we define here.

DEFINITION 10 (Completely random measure). A random measure μ on R+ is called
a completely random measure if for all finite families of bounded disjoint sets (Ai)i≤k in
B(R+), (μ(Ai))i≤k is an independent collection of random variables.
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Any completely random measure μ is a random element of M(R+) and admits a nice
representation [22, 32], Theorem 10.1III. In the special case where μ is stationary, that is, the
distribution of μ([t, t + s]) depends only on s for any t, s ∈ R+, the representation takes the
form (1.1) where the measure ρ satisfies the condition∫ ∞

0
(x ∧ 1)ρ(dx) < ∞;

see [22], Example 10.1 (a)).

LEMMA B.1. Let μ be a completely random measure of the form (1.1), and let A ∈
B(R+) with μ(A) < ∞. Then the characteristic function of μ(A) is given by

E
[
eiθμ(A)]= exp

(
iθaλ(A) + λ(A)

∫ (
eiθx − 1

)
ρ(dx)

)
.

PROOF. This is a straightforward calculation, very similar to the one in Exercise 10.1.2
in [22]. �

We will also need the notion of a Levý process. It is defined as a real valued càdlàg process
X = (X(t))t≥0 such that X(0) = 0, the increments X(t1)−X(0), X(t2)−X(t1), . . . ,X(tn)−
X(tn−1) are independent whenever 0 < t1 < · · · < tn, and such that X(t + s) − X(t) is equal
in distribution to X(s) for all s, t > 0. It is well known that given any bounded function
h : R → R such that h(x) = x in a neighborhood of 0, the characteristic function, χt(θ) =
E(eiθX(t)), can be written as etψ(θ) with

ψ(θ) = iaθ − 1

2
σ 2θ2 +

∫
R\{0}

dρ(x)
(
eiθx − 1 − iθh(x)

)
,

where a ∈ R, σ ≥ 0, and ρ is a σ -finite measure on R such that
∫
(x2 ∧ 1)dρ(x) < ∞.

Following [27], we call the triple (a, σ,ρ) the characteristics associated with h, or simply the
characteristics of X when h is clear from the context. While h is usually chosen as h(x) =
x1|x|≤1, here we follow the approach of [27] insisting that h is continuous (since this is more
convenient when considering limits); specifically, we will choose h(x) = (|x| ∧ 1)sign(x).
We will need the following lemma, which is a special case of Corollary 3.6 in Chapter VII in
[27].

LEMMA B.2 ([27]). Let Xn = (Xn(t))t≥0 be a sequence of Lévy processes with charac-
teristics (bn, σn, ρn). Then Xn converges to a Levý process X with characteristics (b, σ,ρ)

in law if and only if bn → b, σn → σ and
∫

f dρn → ∫
f dρ for all bounded continuous

functions f vanishing in a neighborhood of zero.

We will apply the lemma in the special case where ρn has support on R+,
∫

xρn(dx) is
bounded uniformly in n and bn is given in terms of ρn as bn = ∫ (|x| ∧ 1)ρn(dx). To facilitate
the application in this case, we prove the following, auxiliary lemma.

LEMMA B.3. Let ρn be a sequence of measures on R+ such that
lim supn→∞

∫
xρn(dx) < ∞, let bn = ∫ (x ∧ 1)ρn(dx), and let

a− = lim
ε→0

lim inf
n→∞

∫ ε

0
xρn(x)dx, a+ = lim

ε→0
lim sup
n→∞

∫ ε

0
xρn(x)dx

Then
∫

f dρn → ∫
f dρ for all bounded continuous functions f vanishing in a neighborhood

of zero if and only if ρn converges vaguely to ρ. Furthermore, if ρn → ρ vaguely then bn

converges to some b if and only if a− = a+, in which case b = ∫∞
0 (x ∧ 1)ρ(dx) + a+.
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PROOF. Restricting ourself to large enough n, we may w.l.o.g assume that
∫

xρn(dx) ≤
2c. Combined with the fact that

∫
xρ(dx) ≤ lim supn→∞

∫
xρn(dx) ≤ c, we conclude that

ρn[[M,∞)) ≤ c/M and ρ([M,∞)) ≤ 2c/M . Thus convergence for all bounded, continuous
functions is equivalent to vague convergence.

Let us now assume that ρn is vaguely convergent to ρ, and let 0 < ε ≤ 1 be such that ρ has
not atom at ε. Then

∫∞
ε (x ∧ 1)ρn(dx) converges to

∫∞
ε (x ∧ 1)ρ(dx), showing that

bn =
∫ ∞
ε

(x ∧ 1)ρ(dx) +
∫ ε

0
(x ∧ 1)ρn(dx) + o(1).

This implies that

lim inf
n→∞ bn =

∫ ∞
0

(x ∧ 1)ρ(dx) + a− and lim sup
n→∞

bn =
∫ ∞

0
(x ∧ 1)ρ(dx) + a+,

which completes the proof. �

APPENDIX C: PROPERTIES OF LIMITING ADJACENCY MEASURES

In this Appendix, we calculate the finite dimensional distributions of random adjacency
measures corresponding to the graphexes in Theorem 1.2, Theorem 1.7 and Theorem 1.10.
These are used extensively in the respective proofs.

Configuration model. Let ξCM denote the random adjacency measure associated to the
multigraphex WCM = (WCM, SCM, ICM) and ξ∗

CM := ξCM|(x,y):y≤x .
Then we have the following.

LEMMA C.1. For any A,B ∈ B(R+) with A ∩ B = ∅, the conditional distribution
of ξ∗

CM(A × A), conditional on {(θi, vi)}i≥1, is Poisson(μ(A)2/2) and that of ξCM(A ×
B) is Poisson(μ(A)μ(B)). Moreover, for a disjoint collection (Bi)

k
i=1, conditionally on

{(θi, vi)}i≥1, (ξ∗
CM(Bi × Bi))i∈[k], (ξCM(Bi × Bj))1≤i≤j≤k) is an independent collection.

PROOF. Let {(θi, vi)} be a unit rate Poisson process on R
2+ and set wi := ρ̄−1(vi). Now,

conditionally on {(θi, vi)}i≥1,

ξ∗
CM(A × A) = ∑

i>j

Poi(wiwj )1{θi ∈ A,θj ∈ A} +∑
i

Poi
(
w2

i /2
)
1{θi ∈ A}

+∑
j,k

1{χjk ≤ awj }1{θj ∈ A,σjk ∈ A}

+∑
k

1
{
η′′

k ≤ a2/2
}
1
{
ηk ∈ A,η′

k ∈ A
}

= ∑
i>j

Poi(wiwj )1{θi ∈ A,θj ∈ A} +∑
i

Poi
(
w2

i /2
)
1{θi ∈ A}

+∑
j

Poi
(
a�(A)wj

)
1{θj ∈ A} + Poi

(
a2�(A)2/2

)
,

where, by construction, all the Poi(·) random variables above are mutually independent.
Therefore,

ξ∗
CM(A × A) = Poi

(
a2�(A)2

2
+ a�(A)

∑
i≥1

wi1{θi ∈ A} + 1

2

(∑
i≥1

wi1{θi ∈ A}
)2)

= Poi
(
μ(A)2/2

)
.
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Similarly, conditionally on (wi, θi)i≥1,

ξCM(A × B)

=∑
i �=j

Poi(wiwj )1{θi ∈ A,θj ∈ B}

+∑
j,k

1{χjk ≤ awj }1{θj ∈ A,σjk ∈ B} +∑
j,k

1{χjk ≤ awj }1{θj ∈ B,σjk ∈ A}

+∑
k

1
{
η′′

k ≤ a2/2
}
1
{
ηk ∈ A,η′

k ∈ B
}+∑

k

1
{
η′′

k ≤ a2/2
}
1
{
ηk ∈ B,η′

k ∈ A
}

=∑
i �=j

Poi(wiwj )1{θi ∈ A,θj ∈ B} +∑
j

Poi
(
a�(A)wj

)
1{θj ∈ B}

+∑
j

Poi
(
a�(B)wj

)
1{θj ∈ A} + Poi

(
a2�(A)�(B)

)
,

and thus

ξCM(A × B) = Poi
((

a�(A) +∑
i≥1

wi1{θi ∈ B}
)

×
(
a�(B) +∑

i≥1

wi1{θi ∈ A}
))

= Poi
(
μ(A)μ(B)

)
.

The stated conditional independence follows by construction. �

Generalized random graphs. Let ξGRG denote the random adjacency measure associated to
the graphex W1

GRG in Theorem 1.7, and ξ∗
GRG := ξGRG|(x,y):y≤x . We fix any k ≥ 1 and let

(Bi)i∈[k] be a collection of disjoint intervals such that Bi+1 lies to the left of Bi on R+. Let
N denote the Poisson point process on R

2+ with intensity ρ(dw) ⊗ dθ . Further let Niε =
N([ε,∞) × Bi).

LEMMA C.2.

P
(
ξ∗

GRG(Bi × Bj) = 0,1 ≤ i ≤ j ≤ k
)= lim

ε→0
E
[
G(N1ε, . . . ,Nkε)

]
,

G(l1, . . . , lk) =
∫ ∏

1≤i≤j≤k

fij (w)
∏

i∈[k],∈[li ]
1
{
w

(i)
 ∈ [ε,∞)

} ρ(dw
(i)
 )

ρ([ε,∞))
,

(C.1)

where w is the collection of random variables (w
(i)
 )i∈[k],∈[li ] and

fii(w) = e−a2�(Bi)
2/2

∏
1≤u≤v≤li

1

1 + w
(i)
u w

(i)
v

e−a�(Bi)
∑

u∈[li ] w
(i)
u ,

fij (w) = e−a2�(Bi)�(Bj )
∏

u∈[li ],v∈[lj ]

1

1 + w
(i)
u w

(j)
v

e
−a�(Bi)

∑
u∈[lj ] w

(j)
u −a�(Bj )

∑
u∈[li ] w

(i)
u

.

PROOF. Fix ε > 0 and note that, conditional on Niε = ki for all i ∈ [k], the collec-
tion (wj : θj ∈ ⋃i∈[k] Bi) can be considered as i.i.d. samples from the normalized mea-

sure ρ|[ε,∞). Fix 1 ≤ i < j ≤ k. Given (θ
(i)
u ,w

(i)
u ) and (θ

(j)
v ,w

(j)
v ) with θ

(i)
u ∈ Bi , θ

(j)
v ∈

Bj , w
(i)
u ,w

(j)
v ≥ ε, the adjacency measure ξGRG has a point at (θ

(i)
u , θ

(j)
v ) with probabil-

ity w
(i)
u w

(j)
v

1+w
(i)
u w

(j)
v

. Moreover, these points are independent given {(θ(i)
u ,w

(i)
u ) : 1 ≤ u ≤ li} and
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{(θ(j)
v ,w

(j)
v ) : 1 ≤ v ≤ lj } variables. Further, (1.2) implies that the set Bi ×Bj has an indepen-

dent Poi(a2�(Bi)�(Bj ) + a�(Bi)
∑

v∈[lj ] w
(j)
v + a�(Bj )

∑
u∈[li ] w

(i)
u ) points from points

{(θ,w)} ∈ N with w ≥ ε. Using independence of the contributions, the probability of having
zero points in the adjacency measure is precisely fij (w). Further, we note that given N , the
edges are all independent. This directly motivates the right-hand side of (C.1). Finally, we let
ε ↓ 0 to get the desired equality. The argument for fii(w) is similar, and is therefore omitted.

�

Bipartite configuration model. The limiting adjacency measure in case of Bipartite config-
uration model is given by ξWBCM , where WBCM is defined in (1.9). Let {(θi, vi, ci)}i≥1 be a
unit rate Poisson process on R

2+ × {0,1} and set wi := ρ̄−1
j (vi) if ci = j . For r = 1,2, define

the completely random measure μr := ar� +∑i≥1 ρ̄−1
r (vi)δθi

1{ci = r}. We will show the
following.

LEMMA C.3. For any Borel subsets A,B of R with A∩B =∅, the conditional distribu-
tion of ξ∗

WBCM
(A × A), conditional on {(θi, vi, ci)}i≥1, is Poisson(μ1(A)μ2(A)) and that of

ξWBCM(A × B) is Poisson(μ1(A)μ2(B) + μ2(A)μ1(B)). Moreover, for a disjoint collection
(Bi)

k
i=1, conditionally on {(θi, vi)}i≥1, (ξ∗

WBCM
(Bi × Bi))i∈[k], (ξWBCM(Bi × Bj))1≤i<j≤k) is

an independent collection.

PROOF. Note that conditionally on {(θi, vi, ci)}i≥1,

ξ∗
WBCM

(A × A) = ∑
i>j

Poi(wiwj )1{ci �= cj }1{θi ∈ A,θj ∈ A}

+∑
j,k

∑
r=0,1

1{χjk ≤ arwj }1{cj �= r}1{θj ∈ A,σjk ∈ A}

+∑
k

1
{
η′′

k ≤ a1a2
}
1
{
ηk ∈ A,η′

k ∈ A
}

= ∑
i>j

Poi(wiwj )1{ci �= cj }1{θi ∈ A,θj ∈ A}

+∑
j

∑
r=0,1

Poi
(
ar�(A)wj

)
1{cj �= r}1{θj ∈ A} + Poi

(
a1a2�(A)2),

where, by construction, all the Poi(·) random variables above are mutually independent.
Therefore,

ξ∗
WBCM

(A × A) = Poi
(
a1a2�(A)2 + ∑

r=0,1

ar�(A)
∑
i≥1

1{ci �= r}wi1{θi ∈ A}

+∑
i>j

wiwj1{ci �= cj }1{θi ∈ A,θj ∈ A}
)

= Poi
(
μ1(A)μ2(A)

)
.

Similar argument can be carried out for A,B ∈ B(R+) with A ∩ B = ∅ to conclude that

ξWBCM(A × B) = Poi
(
μ1(A)μ2(B) + μ2(A)μ1(B)

)
.

The stated conditional independence follows by construction. �
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APPENDIX D: RESCALING OF A GRAPHON PROCESS

LEMMA D.1 (Rescaling lemma). Given a sequence of multigraphs (Gn)n≥1 and real

numbers (n)n≥1, suppose that limn→∞ 2e(Gn)
n

= c > 0. Further, let Lbl√n
(Gn)

d−→ ξW for

some multigraphex W = (W,S, I ). Then Lbl(Gn)
d−→ ξWc , Wc = (Wc,Sc, I c) with

Wc(x, y, ·) = W(
√

cx,
√

cy, ·), Sc(x, ·) = 1√
c
S(

√
cx, ·) and I ′(·) = I (·)

c
.

PROOF. Define the point process ξ ′ by ξ ′([0, s]×[0, t]) = ξW([0, c−1/2s]×[0, c−1/2t]),
for any 0 < s, t < ∞. First, let us show that, as n → ∞,

Lbl(Gn)(B)
d−→ξ ′(B),(D.1)

where B is any finite union of rectangles. For simplicity, let us take B = [0, t]2; the general
case follows similarly. Let U1, . . . ,Un ∼ Uniform([0,

√
2e(Gn)]) be i.i.d. random variables.

Further, define U ′
i = ( n

2e(Gn)
)1/2Ui , 1 ≤ i ≤ n, so that, U ′

1, . . . ,U
′
n are i.i.d. samples from

Uniform([0,
√

n]). Thus, we have

Lbl(Gn)
([0, t]2)= ∑

{i,j}∈En

1{Ui ≤ t,Uj ≤ t},

Lbl√n
(Gn)

([0, t]2)= ∑
{i,j}∈En

1
{
U ′

i ≤ t,U ′
j ≤ t

}

= ∑
{i,j}∈En

1
{
Ui ≤

√
2e(Gn)

n

t,Uj ≤
√

2e(Gn)

n

t

}

Let t ′ = c−1/2t . It now follows that

E
[∣∣Lbl(Gn)

([0, t]2)− Lbl√n
(Gn)

([
0, t ′
]2)∣∣]→ 0.

The proof of (D.1) now follows using the the assumption that Lbl√n
(Gn)

d−→ξW .

Next, we need to show that ξ ′ d= ξWc . Recall Definition 5 with all related notation. Thus
the multigraphon part in ξ ′ is given by∑

i �=j

ζij δ(
√

cθi ,
√

cθj ) +∑
i

ζiiδ(
√

cθi ,
√

cθi)
.

On the other hand, if {(θi, vi)}i≥1 is a unit rate Poisson point process in R
2+, then in dis-

tribution, (
√

cθi, vi)i≥1 is equal to (θi,
√

cvi)i≥1. This gives the required rescaling of the
multigraphon part. The rescaling of the star and isolated parts can be dealt similarly using
rescaling properties of Poisson point processes, and thus is omitted here. �
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SUPPLEMENTARY MATERIAL

A correction to Kallenberg’s theorem for jointly exchangeable random measures
(DOI: 10.1214/21-AOP1508SUPP; .pdf). In this supplement, we establish a characterization
of locally finite random measures, correcting an incomplete characterization from Kallen-
berg [31]. As a consequence, we establish that every random adjacency measure is the adja-
cency measure corresponding to some (possibly random) multigraphex.
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